Product Description
| Hermetic piston compressor, MT/Z medium and high temperature compressor specifications | ||||||||
| Rated Performance R22,R407C-50HZ | ||||||||
| Model | Rated Performance* MT-R22 | Rated Performance** MTZ-R407C | ||||||
| Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | |
| MT/MTZ 18 JA | 3881 | 1.45 | 2.73 | 2.68 | 3726 | 1.39 | 2.47 | 2.68 |
| MT/MTZ 22 JC | 5363 | 1.89 | 3.31 | 2.84 | 4777 | 1.81 | 3.31 | 2.64 |
| MT/MTZ 28 JE | 7378 | 2.55 | 4.56 | 2.89 | 6137 | 2.35 | 4.39 | 2.61 |
| MT/MTZ 32 JF | 8064 | 2.98 | 4.97 | 2.70 | 6941 | 2.67 | 5.03 | 2.60 |
| MT/MTZ 36 JG | 9272 | 3.37 | 5.77 | 27.5 | 7994 | 3.12 | 5.71 | 2.56 |
| MT/MTZ 40 JH | 1571 | 3.85 | 6.47 | 2.72 | 9128 | 3.61 | 6.45 | 2.53 |
| MT/MTZ 44 HJ | 11037 | 3.89 | 7.37 | 2.84 | 9867 | 3.63 | 6.49 | 2.72 |
| MT/MTZ 50 HK | 12324 | 4.32 | 8.46 | 2.85 | 11266 | 4.11 | 7.34 | 2.74 |
| MT/MTZ 56 HL | 13771 | 5.04 | 10.27 | 2.73 | 12944 | 4.69 | 8.36 | 2.76 |
| MT/MTZ 64 HM | 15820 | 5.66 | 9.54 | 2.79 | 14587 | 5.25 | 9.35 | 2.78 |
| MT/MTZ 72 HN | 17124 | 6.31 | 10.54 | 2.71 | 16380 | 5.97 | 10.48 | 2.74 |
| MT/MTZ 80 HP | 19534 | 7.13 | 11.58 | 2.74 | 18525 | 6.83 | 11.83 | 2.71 |
| MT/MTZ 100 HS | 23403 | 7.98 | 14.59 | 2.93 | 22111 | 7.85 | 13.58 | 2.82 |
| MT/MTZ 125 HU | 3571 | 10.66 | 17.37 | 2.85 | 29212 | 10.15 | 16.00 | 2.88 |
| MT/MTZ 144 HV | 34340 | 11.95 | 22.75 | 2.87 | 32934 | 11.57 | 18.46 | 2.85 |
| MT/MTZ 160 HW | 38273 | 13.39 | 22.16 | 2.86 | 37386 | 13.28 | 21.40 | 2.82 |
| MTM/MTZ200 HSS | 46807 | 15.97 | 29.19 | 2.93 | 43780 | 15.54 | 26.90 | 2.82 |
| MTM/MTZ250HUU | 6 0571 | 21.33 | 34.75 | 2.85 | 57839 | 20.09 | 31.69 | 2.88 |
| MTM/MTZ288 HVV | 68379 | 23.91 | 45.50 | 2.87 | 65225 | 22.92 | 36.56 | 2.85 |
| MTM/MTZ 320 HWW | 76547 | 26.79 | 44.32 | 2.86 | 74571 | 26.30 | 42.37 | 2.81 |
| Rated Performance*High Efficiency CompressorR22-50HZ | ||||
| Model | Capacity/(W) | Input Power (KW) | Inputcuprret/(A) | COP(W/W) |
| MT 45 HJ | 10786 | 3.62 | 6.86 | 2.98 |
| MT 51 HK | 12300 | 4.01 | 7.86 | 3.07 |
| MT 57 HL | 13711 | 4.54 | 9.24 | 3.02 |
| MT 65 HM | 15763 | 5.23 | 8.81 | 3.01 |
| MT 73 HN | 17863 | 5.98 | 9.99 | 2.99 |
| MT 81 HP | 25718 | 6.94 | 11.27 | 2.93 |
| R134a,R404A,R507-50Hz | ||||||||
| Model | Rated Performance* R134A | Rated Performance**R404A,R507-50HZ | ||||||
| Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | |
| MT/MTZ 18 JA | 2553 | 0.99 | 2.19 | 2.58 | 1865 | 1.2 | 2.47 | 1.56 |
| MT/MTZ22 JC | 3352 | 1.20 | 2.51 | 2.80 | 2673 | 1.56 | 2.96 | 1.71 |
| MT/MTZ 28 JE | 4215 | 1.53 | 3.30 | 2.75 | 3343 | 1.95 | 3.80 | 1.72 |
| MT/MTZ 32 JF | 4951 | 1.87 | 3.94 | 2.65 | 3747 | 2.28 | 4.51 | 1.64 |
| MT/MTZ 36 JG | 6005 | 2.13 | 4.09 | 2.81 | 4371 | 2.66 | 4.91 | 1.64 |
| MT/MTZ 40 JH | 6398 | 2.33 | 4.89 | 2.74 | 4889 | 3.00 | 5.36 | 1.63 |
| MT/MTZ 44 HJ | 6867 | 2.52 | 5.65 | 2.72 | 5152 | 3.16 | 6.37 | 1.63 |
| MT/MTZ 50 HK | 8071 | 2.88 | 5.50 | 2.80 | 6152 | 3.61 | 6.53 | 1.70 |
| MT/MTZ 56 HL | 9069 | 3.21 | 5.83 | 2.82 | 7001 | 4.00 | 7.07 | 1.75 |
| MT/MTZ 64 HM | 1571 | 3.62 | 6.96 | 2.86 | 8132 | 4.54 | 8.30 | 1.79 |
| MT/MTZ 72 HP | 11853 | 4.01 | 7.20 | 2.96 | 9153 | 4.99 | 8.64 | 1.84 |
| MT/MTZ 80 HP | 13578 | 4.63 | 8.45 | 2.93 | 10524 | 5.84 | 10.12 | 1.80 |
| MT/MTZ 100 HS | 15529 | 5.28 | 10.24 | 2.94 | 12571 | 6.83 | 12.16 | 1.76 |
| MT/MTZ 125 HU | 19067 | 6.29 | 10.80 | 3.03 | 15714 | 8.53 | 13.85 | 1.84 |
| MT/MTZ 144 HV | 23620 | 7.83 | 13.78 | 3.02 | 18076 | 9.74 | 16.25 | 1.86 |
| MT/MTZ 160 HW | 25856 | 8.57 | 14.67 | 3.02 | 25713 | 11.00 | 17.94 | 1.84 |
| MTM/MTZ200 HSS | 3571 | 10.45 | 20.28 | 2.94 | 23800 | 13.53 | 24.06 | 1.76 |
| MTM/MTZ 250 HUU | 37746 | 12.45 | 21.38 | 3.03 | 31121 | 16.88 | 27.43 | 1.84 |
| MTM/MTZ288 HVV | 46773 | 15.49 | 27.29 | 3.02 | 35779 | 19.28 | 32.18 | 1.86 |
| MTM/MTZ 320 HWW | 51169 | 16.98 | 29.06 | 3.01 | 40093 | 21.76 | 35.51 | 1.84 |
| 50HZ DATA | |||||||||||
| Model | 50Hz | Nominal Cooling Capacity/Capacity | Input Power | COP | E.E.R. | c Displacement | Displacement | Injection flow | d Net.W | ||
| TR | W | Btu/h | KW | W/W | Btu/h/W | cm³/rev | m3/h | dm3 | kg | ||
| R22 Single | Sm084 | 7 | 20400 | 69600 | 6.12 | 3.33 | 11.4 | 114.5 | 19.92 | 3.3 | 64 |
| SM090 | 7.5 | 21800 | 74400 | 6.54 | 3.33 | 11.4 | 120.5 | 20.97 | 3.3 | 65 | |
| SM100 | 8 | 23100 | 79000 | 6.96 | 3.33 | 11.3 | 127.2 | 22.13 | 3.3 | 65 | |
| SM110 | 9 | 25900 | 88600 | 7.82 | 3.32 | 11.3 | 144.2 | 25.09 | 3.3 | 73 | |
| SM112 | 9.5 | 27600 | 94400 | 7.92 | 3.49 | 11.9 | 151.5 | 26.36 | 3.3 | 64 | |
| SM115 | 9.5 | 28000 | 95600 | 8.31 | 3.37 | 11.5 | 155.0 | 26.97 | 3.8 | 78 | |
| SM120 | 10 | 35710 | 157100 | 8.96 | 3.36 | 11.5 | 166.6 | 28.99 | 3.3 | 73 | |
| SM124 | 10 | 31200 | 106300 | 8.75 | 3.56 | 12.2 | 169.5 | 29.5 | 3.3 | 64 | |
| SM125 | 10 | 35710 | 157100 | 8.93 | 3.37 | 11.5 | 166.6 | 28.99 | 3.8 | 78 | |
| SM147 | 12 | 36000 | 123000 | 10.08 | 3.58 | 12.2 | 193.5 | 33.7 | 3.3 | 67 | |
| SM148 | 12 | 36100 | 123100 | 10.80 | 3.34 | 11.4 | 199.0 | 34.60 | 3.6 | 88 | |
| SM160 | 13 | 39100 | 133500 | 11.60 | 3.37 | 11.5 | 216.6 | 37.69 | 4.0 | 90 | |
| SM161 | 13 | 39000 | 133200 | 11.59 | 3.37 | 11.5 | 216.6 | 37.69 | 3.6 | 88 | |
| SM175 | 14 | 42000 | 143400 | 12.46 | 3.37 | 11.5 | 233.0 | 40.54 | 6.2 | 100 | |
| SM/SY185 | 15 | 45500 | 155300 | 13.62 | 3.34 | 11.4 | 249.9 | 43.48 | 6.2 | 100 | |
| SY240 | 20 | 61200 | 2 0571 0 | 18.20 | 3.36 | 11.5 | 347.8 | 60.50 | 8.0 | 150 | |
| SY300 | 25 | 78200 | 267000 | 22.83 | 3.43 | 11.7 | 437.5 | 76.10 | 8.0 | 157 | |
| SY380 | 30 | 94500 | 322700 | 27.4 | 3.46 | 11.8 | 531.2 | 92.40 | 8.4 | 158 | |
| R107C Single | SZ084 | 7 | 19300 | 66000 | 6.13 | 3.15 | 10.7 | 114.5 | 19.92 | 3.3 | 64 |
| SZ090 | 7.5 | 20400 | 69600 | 6.45 | 3.16 | 10.8 | 120.5 | 20.97 | 3.3 | 65 | |
| SZ100 | 8 | 21600 | 73700 | 6.84 | 3.15 | 10.8 | 127.2 | 22.13 | 3.3 | 65 | |
| SZ110 | 9 | 24600 | 84000 | 7.76 | 3.17 | 10.8 | 144.2 | 25.09 | 3.3 | 73 | |
| SZ115 | 9.5 | 26900 | 91700 | 8.49 | 3.16 | 10.8 | 155.0 | 26.97 | 3.8 | 78 | |
| SZ120 | 10 | 28600 | 97600 | 8.98 | 3.18 | 10.9 | 166.6 | 28.99 | 3.3 | 73 | |
| SZ125 | 10 | 28600 | 97500 | 8.95 | 3.19 | 10.9 | 166.6 | 28.99 | 3.8 | 78 | |
| SZ148 | 12 | 35100 | 119800 | 10.99 | 3.19 | 10.9 | 199.0 | 34.60 | 3.6 | 88 | |
| SZ160 | 13 | 38600 | 131800 | 11.77 | 3.28 | 11.2 | 216.6 | 37.69 | 4.0 | 90 | |
| SZ161 | 13 | 37900 | 129500 | 11.83 | 3.21 | 10.9 | 216.6 | 37.69 | 3.6 | 88 | |
| SZ175 | 14 | 45710 | 136900 | 12.67 | 3.17 | 10.8 | 233.0 | 40.54 | 6.2 | 100 | |
| SZ185 | 15 | 43100 | 147100 | 13.62 | 3.16 | 10.8 | 249.9 | 43.48 | 6.2 | 100 | |
| SZ240 | 20 | 59100 | 201800 | 18.60 | 3.18 | 10.9 | 347.8 | 60.50 | 8.0 | 150 | |
| SZ300 | 25 | 72800 | 248300 | 22.70 | 3.20 | 10.9 | 437.5 | 76.10 | 8.0 | 157 | |
| SZ380 | 30 | 89600 | 305900 | 27.60 | 3.25 | 11.1 | 431.2 | 92.40 | 8.4 | 158 | |
| Model | Nominal Cooling Capacity 60Hz | Nominal Cooling Capacity/Capacity | Input Power | maximum rated current | COP | Displacement | Displacement | Injection flow | Net.W | |||
| TR | W | Btu/h | kW | MCC | COP W/W EERBtu/h/W | cmVrev | m3/h | dm3 | kg | |||
| R22 | HRM032U4 | 2.7 | 7850 | 26790 | 2.55 | 9.5 | 3.08 | 10.5 | 43.8 | 7.6 | 1.06 | 31 |
| HRM034U4 | 2.8 | 8350 | 28490 | 2.66 | 9.5 | 3.14 | 10.5 | 46.2 | 8.03 | 1.06 | 31 | |
| HRM038U4 | 32 | 9240 | 31520 | 2.94 | 10.0 | 3.14 | 10.7 | 46.2 | 8.03 | 1.06 | 31 | |
| HRM040U4 | 3.3 | 9710 | 33120 | 2.98 | 10 | 3.26 | 11.1 | 54.4 | 9.47 | 1.06 | 31 | |
| HRM042U4 | 35 | 10190 | 34770 | 3.13 | 11.0 | 3.26 | 11.1 | 57.2 | 9.95 | 1.06 | 31 | |
| HRM045U4 | 3.8 | 10940 | 37310 | 3.45 | 12 | 3.17 | 10.8 | 61.5 | 10.69 | 1.33 | 31 | |
| HRM047U4 | 3.9 | 11500 | 39250 | 3.57 | 12.0 | 3.23 | 11.0 | 64.1 | 11.15 | 1.33 | 31 | |
| HRM048U4 | 4 | 11510 | 39270 | 3.57 | 12.5 | 3.23 | 11 | 64.4 | 11.21 | 1.57 | 37 | |
| HRM051T4 | 4.3 | 12390 | 44280 | 3.67 | 13.0 | 3.37 | 11.5 | 68.8 | 11.98 | 1.57 | 37 | |
| HRM051U4 | 4.3 | 12800 | 43690 | 3.83 | 13 | 3.34 | 11.4 | 68.8 | 11.98 | 1.57 | 37 | |
| HRM054U4 | 4.5 | 13390 | 45680 | 3.97 | 13.1 | 3.37 | 11.5 | 72.9 | 12.69 | 1.57 | 37 | |
| HRM058U4 | 4.8 | 14340 | 48930 | 4.25 | 15 | 3.37 | 11.5 | 78.2 | 13.6 | 1.57 | 37 | |
| HRM060T4 | 5.0 | 14570 | 49720 | 4.28 | 15.0 | 3.40 | 11.6 | 81.0 | 14.09 | 1.57 | 37 | |
| HRM060U4 | 5.0 | 14820 | 5 0571 | 4.4 | 15 | 3.37 | 11.5 | 81 | 14.09 | 1.57 | 37 | |
| HLM068T4 | 5.7 | 16880 | 57580 | 5.00 | 15.0 | 3.37 | 11.5 | 93.1 | 16.20 | 1.57 | 37 | |
| HLM072T4 | 6.0 | 17840 | 6 0571 | 5.29 | 15 | 3.37 | 11.5 | 98.7 | 17.2 | 1.57 | 37 | |
| HLM075T4 | 6.3 | 18430 | 62880 | 5.37 | 16.0 | 3.43 | 11.7 | 102.8 | 17.88 | 1.57 | 37 | |
| HLM081T4 | 6.8 | 19890 | 67880 | 5.8 | 17 | 3.43 | 11.7 | 110.9 | 19.3 | 1.57 | 37 | |
| HCM094T4 | 7.8 | 23060 | 78670 | 6.80 | 21.0 | 3.39 | 11.6 | 126.0 | 21.93 | 2.66 | 44 | |
| HCM109T4 | 9.1 | 26690 | 91070 | 7.77 | 24 | 3.43 | 11.7 | 148.8 | 25.89 | 2.66 | 44 | |
| HCM120T4 | 10.0 | 29130 | 99390 | 8.51 | 25.0 | 3.42 | 11.7 | 162.4 | 28.26 | 2.66 | 44 | |
| R407C | HRP034T4 | 2.8 | 7940 | 27080 | 2.68 | 9.5 | 2.96 | 10.1 | 46.2 | 8 | 1.06 | 31 |
| HRP038T4 | 3.2 | 8840 | 30150 | 2.82 | 11 | 3.14 | 10.7 | 51.6 | 8.98 | 1.06 | 31 | |
| HRP040T4 | 3.3 | 9110 | 31080 | 3.14 | 11.5 | 2.9 | 9.9 | 54.4 | 9.47 | 1.06 | 31 | |
| HRP042T4 | 3.5 | 9580 | 32680 | 3.3 | 10 | 2.9 | 9.9 | 57.2 | 9.95 | 1.06 | 31 | |
| HRP045T4 | 3.8 | 1571 | 36890 | 3.58 | 12 | 3.02 | 10.3 | 61.5 | 10.69 | 1.33 | 31 | |
| HRP047T4 | 3.9 | 11130 | 37980 | 3.69 | 12 | 3.02 | 10.3 | 64.1 | 11.15 1.33 | 31 | ||
| HRP048T4 | 4.0 | 11100 | 37880 | 3.35 | 12 | 3.31 | 11.3 | 64.4 | 1L21 | 1.57 | 37 | |
| HRP051T4 | 4.3 | 12120 | 41370 | 3.83 | 13 | 3.17 | 10.8 | 68.8 | 11.98 | 1.57 | 37 | |
| HRP054T4 | 4.5 | 12570 | 42880 | 3.97 | 12.5 | 3.17 | 10.8 | 72.8 | 12.66 | 1.57 | 37 | |
| HRP058T4 | 4.8 | 13470 | 45970 | 4.25 | 14.0 | 3.17 | 10.8 | 78.2 | 13.6 | 1.57 | 37 | |
| HRP060T4 | 5.0 | 13860 | 47280 | 4.26 | 15 | 3.25 | 11.1 | 81 | 14.09 | 1.57 | 37 | |
| HLP068T4 | 5.7 | 15700 | 53560 | 5.10 | 15.0 | 3.08 | 10.5 | 93.1 | 16.20 | 1.57 | 37 | |
| HLP072T4 | 6.0 | 16810 | 57350 | 5.16 | 15 | 3.26 | 11.1 | 98.7 | 17.17 | 1.57 | 37 | |
| HLP075T4 | 6.3 | 18040 | 61550 | 5.54 | 16.0 | 3.26 | 11-1 | 102.8 | 17.88 | 1.57 | 37 | |
| HLP081T4 | 6.8 | 18600 | 63470 | 5,66 | 17 | 3.28 | 11,2 | 110,9 | 19,30 | 1,57 | 37 | |
| HCP094T4 | 7.8 | 21590 | 73660 | 6.63 | 21.0 | 3.26 | 11.1 | 126.0 | 21.93 | 2.66 | 44 | |
| HCP109T4 | 9.1 | 25070 | 85550 | 7.77 | 24 | 3.23 | 11 | 148.8 | 25.89 | 2.66 | 44 | |
| HCP120T4 | 10.0 | 27370 | 93400 | 8.47 | 25.0 | 3.23 | 11.0 | 162.4 | 28.26 | 2.66 | 44 | |
| R410A | HRH571U4 | 2.4 | 7120 | 24310 | 2.43 | 10 | 2.93 | 10 | 27.8 | 4.84 | 1.06 | 31 |
| HRH031U4 | 26 | 7530 | 25710 | 2.67 | 10.0 | 2.82 | 9.62 | 29.8 | 5.19 | 1.06 | 31 | |
| HRH032U4 | 2.7 | 7670 | 26170 | 2.75 | 10 | 2.79 | 9.51 | 30.6 | 5.33 | 1.06 | 31 | |
| HRH034U4 | 2.8 | 8500 | 29000 | 2.90 | 10.0 | 2.93 | 10.0 | 33.3 | 5.75 | 1.06 | 31 | |
| HRH036U4 | 3 | 8820 | 30110 | 3.13 | 10 | 2.82 | 9.62 | 34.7 | 6.04 | 1.06 | 31 | |
| HRH038U4 | 3.2 | 9250 | 31560 | 3.35 | 12.0 | 2.76 | 9.41 | 36.5 | 6.36 | 1.06 | 32 | |
| HRH040U4 | 3.3 | 15710 | 34810 | 3.58 | 12 | 2.85 | 9.72 | 39.6 | 6.9 | 1.33 | 32 | |
| HRH041U4 | 3.3 | 10050 | 34300 | 3.43 | 12.5 | 2.93 | 10 | 39.3 | 6.8 | 1.57 | 37 | |
| HRH044U4 | 3.7 | 1 0571 | 36940 | 3.92 | 13.5 | 2.76 | 9.41 | 42.6 | 7.41 | 1.57 | 37 | |
| HRH049U4 | 4.1 | 12110 | 41320 | 4.04 | 13.5 | 2.99 | 10.22 | 47.4 | 8.24 | 1.57 | 37 | |
| HRH051U4 | 4.3 | 12860 | 43890 | 4.21 | 13 | 3.05 | 10.42 | 49.3 | 5.58 | 1.57 | 37 | |
| HRH054U4 | 4.5 | 13340 | 45510 | 4.41 | 15.0 | 3.02 | 10.32 | 52.1 | 9.07 | 1.57 | 37 | |
| HRH056U4 | 4.7 | 13830 | 47200 | 4.58 | 15 | 3.02 | 1031 | 54.1 | 9.42 | 1.57 | 37 | |
| HLH061T4 | 5.1 | 15210 | 51880 | 4.89 | 15.0 | 3.11 | 1061 | 57.8 | 10.10 | 1.57 | 37 | |
| HLH068T4 | 5.7 | 16880 | 57610 | 5.26 | 19 | 3.21 | 1096 | 64.4 | 11.21 | 1.57 | 37 | |
| HLJ072T4 | 6.0 | 17840 | 60900 | 5.56 | 19.0 | 3.21 | 11.0 | 68.0 | 11.82 | 1.57 | 37 | |
| HLJ075T4 | 6.3 | 18600 | 63490 | 5.77 | 18 | 3.22 | 11 | 70.8 | 12.32 | 1.57 | 37 | |
| HLJ083T4 | 6.9 | 20420 | 69690 | 6.28 | 19.0 | 3.25 | Hl | 78.1 | 13.59 | 1.57 | 37 | |
| HCJ090T4 | 7.5 | 22320 | 76190 | 7.19 | 19 | 3.11 | 10.6 | 86.9 | 15.11 | 2.66 | 44 | |
| HCJ105T4 | 8.8 | 26100 | 89090 | 8.25 | 25.0 | 3.16 | 10.8 | 101.6 | 17.68 | 2.66 | 44 | |
| HCJ120T4 | 10 | 29610 | 157180 | 9.53 | 27 | 3.11 | 10.6 | 116.4 | 20.24 | 2.66 | 44 | |
| Model | HP | Voltage | ||||||
| MLM019T5LP9 | 2.5 | 220-240V-1-50HZ | ||||||
| MLM571T5LP9 | 3 | 220-240V-1-50HZ | ||||||
| MLM026T5LP9 | 3.5 | 220-240V-1-50HZ | ||||||
| MLM015T4LP9 | 2 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM019T4LP9 | 2.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM571T4LP9 | 3 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM026T4LP9 | 3.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM030T4LC9 | 4 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM038T4LC9 | 5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM045T4LC9 | 6 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM048T4LC9 | 7 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM058T4LC9 | 7.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM066T4LC9 | 9 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM076T4LC9 | 10 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| *MLM series general-purpose lubricating oil is AB alkyl benzene oil, the refrigerant is R22. | ||||||||
| Model | HP | Voltage | ||||||
| MLZ019T5LP9 | 2.5 | 220-240V-1-50HZ | ||||||
| MLZ571T5LP9 | 3 | 220-240V-1-50HZ | ||||||
| MLZ026T5LP9 | 3.5 | 220-240V-1-50HZ | ||||||
| MLZ015T4LP9 | 2 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ019T4LP9 | 2.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ571T4LP9 | 3 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ026T4LP9 | 3.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ030T4LC9 | 4 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ038T4LC9 | 5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ045T4LC9 | 6 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ048T4LC9 | 7 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ058T4LC9 | 7.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ066T4LC9 | 9 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ076T4LC9 | 10 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| *MLM series general-purpose lubricating oil is PVE ugly oil, refrigerant R404A/R134A/R507/R22 | ||||||||
Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Installation Type: | Movable Type |
|---|---|
| Lubrication Style: | Lubricated |
| Cylinder Position: | Vertical |
| Model: | Hrh040u4lp6 |
| Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2024-02-24
China wholesaler Danfos Scroll Parts Air Cooler Refrigeration Compressor Danfos 50Hz R410A Single Hrh041u4 in Stock 12v air compressor
Product Description
| Hermetic piston compressor, MT/Z medium and high temperature compressor specifications | ||||||||
| Rated Performance R22,R407C-50HZ | ||||||||
| Model | Rated Performance* MT-R22 | Rated Performance** MTZ-R407C | ||||||
| Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | |
| MT/MTZ 18 JA | 3881 | 1.45 | 2.73 | 2.68 | 3726 | 1.39 | 2.47 | 2.68 |
| MT/MTZ 22 JC | 5363 | 1.89 | 3.31 | 2.84 | 4777 | 1.81 | 3.31 | 2.64 |
| MT/MTZ 28 JE | 7378 | 2.55 | 4.56 | 2.89 | 6137 | 2.35 | 4.39 | 2.61 |
| MT/MTZ 32 JF | 8064 | 2.98 | 4.97 | 2.70 | 6941 | 2.67 | 5.03 | 2.60 |
| MT/MTZ 36 JG | 9272 | 3.37 | 5.77 | 27.5 | 7994 | 3.12 | 5.71 | 2.56 |
| MT/MTZ 40 JH | 1571 | 3.85 | 6.47 | 2.72 | 9128 | 3.61 | 6.45 | 2.53 |
| MT/MTZ 44 HJ | 11037 | 3.89 | 7.37 | 2.84 | 9867 | 3.63 | 6.49 | 2.72 |
| MT/MTZ 50 HK | 12324 | 4.32 | 8.46 | 2.85 | 11266 | 4.11 | 7.34 | 2.74 |
| MT/MTZ 56 HL | 13771 | 5.04 | 10.27 | 2.73 | 12944 | 4.69 | 8.36 | 2.76 |
| MT/MTZ 64 HM | 15820 | 5.66 | 9.54 | 2.79 | 14587 | 5.25 | 9.35 | 2.78 |
| MT/MTZ 72 HN | 17124 | 6.31 | 10.54 | 2.71 | 16380 | 5.97 | 10.48 | 2.74 |
| MT/MTZ 80 HP | 19534 | 7.13 | 11.58 | 2.74 | 18525 | 6.83 | 11.83 | 2.71 |
| MT/MTZ 100 HS | 23403 | 7.98 | 14.59 | 2.93 | 22111 | 7.85 | 13.58 | 2.82 |
| MT/MTZ 125 HU | 3571 | 10.66 | 17.37 | 2.85 | 29212 | 10.15 | 16.00 | 2.88 |
| MT/MTZ 144 HV | 34340 | 11.95 | 22.75 | 2.87 | 32934 | 11.57 | 18.46 | 2.85 |
| MT/MTZ 160 HW | 38273 | 13.39 | 22.16 | 2.86 | 37386 | 13.28 | 21.40 | 2.82 |
| MTM/MTZ200 HSS | 46807 | 15.97 | 29.19 | 2.93 | 43780 | 15.54 | 26.90 | 2.82 |
| MTM/MTZ250HUU | 6 0571 | 21.33 | 34.75 | 2.85 | 57839 | 20.09 | 31.69 | 2.88 |
| MTM/MTZ288 HVV | 68379 | 23.91 | 45.50 | 2.87 | 65225 | 22.92 | 36.56 | 2.85 |
| MTM/MTZ 320 HWW | 76547 | 26.79 | 44.32 | 2.86 | 74571 | 26.30 | 42.37 | 2.81 |
| Rated Performance*High Efficiency CompressorR22-50HZ | ||||
| Model | Capacity/(W) | Input Power (KW) | Inputcuprret/(A) | COP(W/W) |
| MT 45 HJ | 10786 | 3.62 | 6.86 | 2.98 |
| MT 51 HK | 12300 | 4.01 | 7.86 | 3.07 |
| MT 57 HL | 13711 | 4.54 | 9.24 | 3.02 |
| MT 65 HM | 15763 | 5.23 | 8.81 | 3.01 |
| MT 73 HN | 17863 | 5.98 | 9.99 | 2.99 |
| MT 81 HP | 25718 | 6.94 | 11.27 | 2.93 |
| R134a,R404A,R507-50Hz | ||||||||
| Model | Rated Performance* R134A | Rated Performance**R404A,R507-50HZ | ||||||
| Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | |
| MT/MTZ 18 JA | 2553 | 0.99 | 2.19 | 2.58 | 1865 | 1.2 | 2.47 | 1.56 |
| MT/MTZ22 JC | 3352 | 1.20 | 2.51 | 2.80 | 2673 | 1.56 | 2.96 | 1.71 |
| MT/MTZ 28 JE | 4215 | 1.53 | 3.30 | 2.75 | 3343 | 1.95 | 3.80 | 1.72 |
| MT/MTZ 32 JF | 4951 | 1.87 | 3.94 | 2.65 | 3747 | 2.28 | 4.51 | 1.64 |
| MT/MTZ 36 JG | 6005 | 2.13 | 4.09 | 2.81 | 4371 | 2.66 | 4.91 | 1.64 |
| MT/MTZ 40 JH | 6398 | 2.33 | 4.89 | 2.74 | 4889 | 3.00 | 5.36 | 1.63 |
| MT/MTZ 44 HJ | 6867 | 2.52 | 5.65 | 2.72 | 5152 | 3.16 | 6.37 | 1.63 |
| MT/MTZ 50 HK | 8071 | 2.88 | 5.50 | 2.80 | 6152 | 3.61 | 6.53 | 1.70 |
| MT/MTZ 56 HL | 9069 | 3.21 | 5.83 | 2.82 | 7001 | 4.00 | 7.07 | 1.75 |
| MT/MTZ 64 HM | 1571 | 3.62 | 6.96 | 2.86 | 8132 | 4.54 | 8.30 | 1.79 |
| MT/MTZ 72 HP | 11853 | 4.01 | 7.20 | 2.96 | 9153 | 4.99 | 8.64 | 1.84 |
| MT/MTZ 80 HP | 13578 | 4.63 | 8.45 | 2.93 | 10524 | 5.84 | 10.12 | 1.80 |
| MT/MTZ 100 HS | 15529 | 5.28 | 10.24 | 2.94 | 12571 | 6.83 | 12.16 | 1.76 |
| MT/MTZ 125 HU | 19067 | 6.29 | 10.80 | 3.03 | 15714 | 8.53 | 13.85 | 1.84 |
| MT/MTZ 144 HV | 23620 | 7.83 | 13.78 | 3.02 | 18076 | 9.74 | 16.25 | 1.86 |
| MT/MTZ 160 HW | 25856 | 8.57 | 14.67 | 3.02 | 25713 | 11.00 | 17.94 | 1.84 |
| MTM/MTZ200 HSS | 3571 | 10.45 | 20.28 | 2.94 | 23800 | 13.53 | 24.06 | 1.76 |
| MTM/MTZ 250 HUU | 37746 | 12.45 | 21.38 | 3.03 | 31121 | 16.88 | 27.43 | 1.84 |
| MTM/MTZ288 HVV | 46773 | 15.49 | 27.29 | 3.02 | 35779 | 19.28 | 32.18 | 1.86 |
| MTM/MTZ 320 HWW | 51169 | 16.98 | 29.06 | 3.01 | 40093 | 21.76 | 35.51 | 1.84 |
| 50HZ DATA | |||||||||||
| Model | 50Hz | Nominal Cooling Capacity/Capacity | Input Power | COP | E.E.R. | c Displacement | Displacement | Injection flow | d Net.W | ||
| TR | W | Btu/h | KW | W/W | Btu/h/W | cm³/rev | m3/h | dm3 | kg | ||
| R22 Single | Sm084 | 7 | 20400 | 69600 | 6.12 | 3.33 | 11.4 | 114.5 | 19.92 | 3.3 | 64 |
| SM090 | 7.5 | 21800 | 74400 | 6.54 | 3.33 | 11.4 | 120.5 | 20.97 | 3.3 | 65 | |
| SM100 | 8 | 23100 | 79000 | 6.96 | 3.33 | 11.3 | 127.2 | 22.13 | 3.3 | 65 | |
| SM110 | 9 | 25900 | 88600 | 7.82 | 3.32 | 11.3 | 144.2 | 25.09 | 3.3 | 73 | |
| SM112 | 9.5 | 27600 | 94400 | 7.92 | 3.49 | 11.9 | 151.5 | 26.36 | 3.3 | 64 | |
| SM115 | 9.5 | 28000 | 95600 | 8.31 | 3.37 | 11.5 | 155.0 | 26.97 | 3.8 | 78 | |
| SM120 | 10 | 35710 | 157100 | 8.96 | 3.36 | 11.5 | 166.6 | 28.99 | 3.3 | 73 | |
| SM124 | 10 | 31200 | 106300 | 8.75 | 3.56 | 12.2 | 169.5 | 29.5 | 3.3 | 64 | |
| SM125 | 10 | 35710 | 157100 | 8.93 | 3.37 | 11.5 | 166.6 | 28.99 | 3.8 | 78 | |
| SM147 | 12 | 36000 | 123000 | 10.08 | 3.58 | 12.2 | 193.5 | 33.7 | 3.3 | 67 | |
| SM148 | 12 | 36100 | 123100 | 10.80 | 3.34 | 11.4 | 199.0 | 34.60 | 3.6 | 88 | |
| SM160 | 13 | 39100 | 133500 | 11.60 | 3.37 | 11.5 | 216.6 | 37.69 | 4.0 | 90 | |
| SM161 | 13 | 39000 | 133200 | 11.59 | 3.37 | 11.5 | 216.6 | 37.69 | 3.6 | 88 | |
| SM175 | 14 | 42000 | 143400 | 12.46 | 3.37 | 11.5 | 233.0 | 40.54 | 6.2 | 100 | |
| SM/SY185 | 15 | 45500 | 155300 | 13.62 | 3.34 | 11.4 | 249.9 | 43.48 | 6.2 | 100 | |
| SY240 | 20 | 61200 | 2 0571 0 | 18.20 | 3.36 | 11.5 | 347.8 | 60.50 | 8.0 | 150 | |
| SY300 | 25 | 78200 | 267000 | 22.83 | 3.43 | 11.7 | 437.5 | 76.10 | 8.0 | 157 | |
| SY380 | 30 | 94500 | 322700 | 27.4 | 3.46 | 11.8 | 531.2 | 92.40 | 8.4 | 158 | |
| R107C Single | SZ084 | 7 | 19300 | 66000 | 6.13 | 3.15 | 10.7 | 114.5 | 19.92 | 3.3 | 64 |
| SZ090 | 7.5 | 20400 | 69600 | 6.45 | 3.16 | 10.8 | 120.5 | 20.97 | 3.3 | 65 | |
| SZ100 | 8 | 21600 | 73700 | 6.84 | 3.15 | 10.8 | 127.2 | 22.13 | 3.3 | 65 | |
| SZ110 | 9 | 24600 | 84000 | 7.76 | 3.17 | 10.8 | 144.2 | 25.09 | 3.3 | 73 | |
| SZ115 | 9.5 | 26900 | 91700 | 8.49 | 3.16 | 10.8 | 155.0 | 26.97 | 3.8 | 78 | |
| SZ120 | 10 | 28600 | 97600 | 8.98 | 3.18 | 10.9 | 166.6 | 28.99 | 3.3 | 73 | |
| SZ125 | 10 | 28600 | 97500 | 8.95 | 3.19 | 10.9 | 166.6 | 28.99 | 3.8 | 78 | |
| SZ148 | 12 | 35100 | 119800 | 10.99 | 3.19 | 10.9 | 199.0 | 34.60 | 3.6 | 88 | |
| SZ160 | 13 | 38600 | 131800 | 11.77 | 3.28 | 11.2 | 216.6 | 37.69 | 4.0 | 90 | |
| SZ161 | 13 | 37900 | 129500 | 11.83 | 3.21 | 10.9 | 216.6 | 37.69 | 3.6 | 88 | |
| SZ175 | 14 | 45710 | 136900 | 12.67 | 3.17 | 10.8 | 233.0 | 40.54 | 6.2 | 100 | |
| SZ185 | 15 | 43100 | 147100 | 13.62 | 3.16 | 10.8 | 249.9 | 43.48 | 6.2 | 100 | |
| SZ240 | 20 | 59100 | 201800 | 18.60 | 3.18 | 10.9 | 347.8 | 60.50 | 8.0 | 150 | |
| SZ300 | 25 | 72800 | 248300 | 22.70 | 3.20 | 10.9 | 437.5 | 76.10 | 8.0 | 157 | |
| SZ380 | 30 | 89600 | 305900 | 27.60 | 3.25 | 11.1 | 431.2 | 92.40 | 8.4 | 158 | |
| Model | Nominal Cooling Capacity 60Hz | Nominal Cooling Capacity/Capacity | Input Power | maximum rated current | COP | Displacement | Displacement | Injection flow | Net.W | |||
| TR | W | Btu/h | kW | MCC | COP W/W EERBtu/h/W | cmVrev | m3/h | dm3 | kg | |||
| R22 | HRM032U4 | 2.7 | 7850 | 26790 | 2.55 | 9.5 | 3.08 | 10.5 | 43.8 | 7.6 | 1.06 | 31 |
| HRM034U4 | 2.8 | 8350 | 28490 | 2.66 | 9.5 | 3.14 | 10.5 | 46.2 | 8.03 | 1.06 | 31 | |
| HRM038U4 | 32 | 9240 | 31520 | 2.94 | 10.0 | 3.14 | 10.7 | 46.2 | 8.03 | 1.06 | 31 | |
| HRM040U4 | 3.3 | 9710 | 33120 | 2.98 | 10 | 3.26 | 11.1 | 54.4 | 9.47 | 1.06 | 31 | |
| HRM042U4 | 35 | 10190 | 34770 | 3.13 | 11.0 | 3.26 | 11.1 | 57.2 | 9.95 | 1.06 | 31 | |
| HRM045U4 | 3.8 | 10940 | 37310 | 3.45 | 12 | 3.17 | 10.8 | 61.5 | 10.69 | 1.33 | 31 | |
| HRM047U4 | 3.9 | 11500 | 39250 | 3.57 | 12.0 | 3.23 | 11.0 | 64.1 | 11.15 | 1.33 | 31 | |
| HRM048U4 | 4 | 11510 | 39270 | 3.57 | 12.5 | 3.23 | 11 | 64.4 | 11.21 | 1.57 | 37 | |
| HRM051T4 | 4.3 | 12390 | 44280 | 3.67 | 13.0 | 3.37 | 11.5 | 68.8 | 11.98 | 1.57 | 37 | |
| HRM051U4 | 4.3 | 12800 | 43690 | 3.83 | 13 | 3.34 | 11.4 | 68.8 | 11.98 | 1.57 | 37 | |
| HRM054U4 | 4.5 | 13390 | 45680 | 3.97 | 13.1 | 3.37 | 11.5 | 72.9 | 12.69 | 1.57 | 37 | |
| HRM058U4 | 4.8 | 14340 | 48930 | 4.25 | 15 | 3.37 | 11.5 | 78.2 | 13.6 | 1.57 | 37 | |
| HRM060T4 | 5.0 | 14570 | 49720 | 4.28 | 15.0 | 3.40 | 11.6 | 81.0 | 14.09 | 1.57 | 37 | |
| HRM060U4 | 5.0 | 14820 | 5 0571 | 4.4 | 15 | 3.37 | 11.5 | 81 | 14.09 | 1.57 | 37 | |
| HLM068T4 | 5.7 | 16880 | 57580 | 5.00 | 15.0 | 3.37 | 11.5 | 93.1 | 16.20 | 1.57 | 37 | |
| HLM072T4 | 6.0 | 17840 | 6 0571 | 5.29 | 15 | 3.37 | 11.5 | 98.7 | 17.2 | 1.57 | 37 | |
| HLM075T4 | 6.3 | 18430 | 62880 | 5.37 | 16.0 | 3.43 | 11.7 | 102.8 | 17.88 | 1.57 | 37 | |
| HLM081T4 | 6.8 | 19890 | 67880 | 5.8 | 17 | 3.43 | 11.7 | 110.9 | 19.3 | 1.57 | 37 | |
| HCM094T4 | 7.8 | 23060 | 78670 | 6.80 | 21.0 | 3.39 | 11.6 | 126.0 | 21.93 | 2.66 | 44 | |
| HCM109T4 | 9.1 | 26690 | 91070 | 7.77 | 24 | 3.43 | 11.7 | 148.8 | 25.89 | 2.66 | 44 | |
| HCM120T4 | 10.0 | 29130 | 99390 | 8.51 | 25.0 | 3.42 | 11.7 | 162.4 | 28.26 | 2.66 | 44 | |
| R407C | HRP034T4 | 2.8 | 7940 | 27080 | 2.68 | 9.5 | 2.96 | 10.1 | 46.2 | 8 | 1.06 | 31 |
| HRP038T4 | 3.2 | 8840 | 30150 | 2.82 | 11 | 3.14 | 10.7 | 51.6 | 8.98 | 1.06 | 31 | |
| HRP040T4 | 3.3 | 9110 | 31080 | 3.14 | 11.5 | 2.9 | 9.9 | 54.4 | 9.47 | 1.06 | 31 | |
| HRP042T4 | 3.5 | 9580 | 32680 | 3.3 | 10 | 2.9 | 9.9 | 57.2 | 9.95 | 1.06 | 31 | |
| HRP045T4 | 3.8 | 1571 | 36890 | 3.58 | 12 | 3.02 | 10.3 | 61.5 | 10.69 | 1.33 | 31 | |
| HRP047T4 | 3.9 | 11130 | 37980 | 3.69 | 12 | 3.02 | 10.3 | 64.1 | 11.15 1.33 | 31 | ||
| HRP048T4 | 4.0 | 11100 | 37880 | 3.35 | 12 | 3.31 | 11.3 | 64.4 | 1L21 | 1.57 | 37 | |
| HRP051T4 | 4.3 | 12120 | 41370 | 3.83 | 13 | 3.17 | 10.8 | 68.8 | 11.98 | 1.57 | 37 | |
| HRP054T4 | 4.5 | 12570 | 42880 | 3.97 | 12.5 | 3.17 | 10.8 | 72.8 | 12.66 | 1.57 | 37 | |
| HRP058T4 | 4.8 | 13470 | 45970 | 4.25 | 14.0 | 3.17 | 10.8 | 78.2 | 13.6 | 1.57 | 37 | |
| HRP060T4 | 5.0 | 13860 | 47280 | 4.26 | 15 | 3.25 | 11.1 | 81 | 14.09 | 1.57 | 37 | |
| HLP068T4 | 5.7 | 15700 | 53560 | 5.10 | 15.0 | 3.08 | 10.5 | 93.1 | 16.20 | 1.57 | 37 | |
| HLP072T4 | 6.0 | 16810 | 57350 | 5.16 | 15 | 3.26 | 11.1 | 98.7 | 17.17 | 1.57 | 37 | |
| HLP075T4 | 6.3 | 18040 | 61550 | 5.54 | 16.0 | 3.26 | 11-1 | 102.8 | 17.88 | 1.57 | 37 | |
| HLP081T4 | 6.8 | 18600 | 63470 | 5,66 | 17 | 3.28 | 11,2 | 110,9 | 19,30 | 1,57 | 37 | |
| HCP094T4 | 7.8 | 21590 | 73660 | 6.63 | 21.0 | 3.26 | 11.1 | 126.0 | 21.93 | 2.66 | 44 | |
| HCP109T4 | 9.1 | 25070 | 85550 | 7.77 | 24 | 3.23 | 11 | 148.8 | 25.89 | 2.66 | 44 | |
| HCP120T4 | 10.0 | 27370 | 93400 | 8.47 | 25.0 | 3.23 | 11.0 | 162.4 | 28.26 | 2.66 | 44 | |
| R410A | HRH571U4 | 2.4 | 7120 | 24310 | 2.43 | 10 | 2.93 | 10 | 27.8 | 4.84 | 1.06 | 31 |
| HRH031U4 | 26 | 7530 | 25710 | 2.67 | 10.0 | 2.82 | 9.62 | 29.8 | 5.19 | 1.06 | 31 | |
| HRH032U4 | 2.7 | 7670 | 26170 | 2.75 | 10 | 2.79 | 9.51 | 30.6 | 5.33 | 1.06 | 31 | |
| HRH034U4 | 2.8 | 8500 | 29000 | 2.90 | 10.0 | 2.93 | 10.0 | 33.3 | 5.75 | 1.06 | 31 | |
| HRH036U4 | 3 | 8820 | 30110 | 3.13 | 10 | 2.82 | 9.62 | 34.7 | 6.04 | 1.06 | 31 | |
| HRH038U4 | 3.2 | 9250 | 31560 | 3.35 | 12.0 | 2.76 | 9.41 | 36.5 | 6.36 | 1.06 | 32 | |
| HRH040U4 | 3.3 | 15710 | 34810 | 3.58 | 12 | 2.85 | 9.72 | 39.6 | 6.9 | 1.33 | 32 | |
| HRH041U4 | 3.3 | 10050 | 34300 | 3.43 | 12.5 | 2.93 | 10 | 39.3 | 6.8 | 1.57 | 37 | |
| HRH044U4 | 3.7 | 1 0571 | 36940 | 3.92 | 13.5 | 2.76 | 9.41 | 42.6 | 7.41 | 1.57 | 37 | |
| HRH049U4 | 4.1 | 12110 | 41320 | 4.04 | 13.5 | 2.99 | 10.22 | 47.4 | 8.24 | 1.57 | 37 | |
| HRH051U4 | 4.3 | 12860 | 43890 | 4.21 | 13 | 3.05 | 10.42 | 49.3 | 5.58 | 1.57 | 37 | |
| HRH054U4 | 4.5 | 13340 | 45510 | 4.41 | 15.0 | 3.02 | 10.32 | 52.1 | 9.07 | 1.57 | 37 | |
| HRH056U4 | 4.7 | 13830 | 47200 | 4.58 | 15 | 3.02 | 1031 | 54.1 | 9.42 | 1.57 | 37 | |
| HLH061T4 | 5.1 | 15210 | 51880 | 4.89 | 15.0 | 3.11 | 1061 | 57.8 | 10.10 | 1.57 | 37 | |
| HLH068T4 | 5.7 | 16880 | 57610 | 5.26 | 19 | 3.21 | 1096 | 64.4 | 11.21 | 1.57 | 37 | |
| HLJ072T4 | 6.0 | 17840 | 60900 | 5.56 | 19.0 | 3.21 | 11.0 | 68.0 | 11.82 | 1.57 | 37 | |
| HLJ075T4 | 6.3 | 18600 | 63490 | 5.77 | 18 | 3.22 | 11 | 70.8 | 12.32 | 1.57 | 37 | |
| HLJ083T4 | 6.9 | 20420 | 69690 | 6.28 | 19.0 | 3.25 | Hl | 78.1 | 13.59 | 1.57 | 37 | |
| HCJ090T4 | 7.5 | 22320 | 76190 | 7.19 | 19 | 3.11 | 10.6 | 86.9 | 15.11 | 2.66 | 44 | |
| HCJ105T4 | 8.8 | 26100 | 89090 | 8.25 | 25.0 | 3.16 | 10.8 | 101.6 | 17.68 | 2.66 | 44 | |
| HCJ120T4 | 10 | 29610 | 157180 | 9.53 | 27 | 3.11 | 10.6 | 116.4 | 20.24 | 2.66 | 44 | |
| Model | HP | Voltage | ||||||
| MLM019T5LP9 | 2.5 | 220-240V-1-50HZ | ||||||
| MLM571T5LP9 | 3 | 220-240V-1-50HZ | ||||||
| MLM026T5LP9 | 3.5 | 220-240V-1-50HZ | ||||||
| MLM015T4LP9 | 2 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM019T4LP9 | 2.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM571T4LP9 | 3 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM026T4LP9 | 3.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM030T4LC9 | 4 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM038T4LC9 | 5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM045T4LC9 | 6 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM048T4LC9 | 7 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM058T4LC9 | 7.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM066T4LC9 | 9 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM076T4LC9 | 10 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| *MLM series general-purpose lubricating oil is AB alkyl benzene oil, the refrigerant is R22. | ||||||||
| Model | HP | Voltage | ||||||
| MLZ019T5LP9 | 2.5 | 220-240V-1-50HZ | ||||||
| MLZ571T5LP9 | 3 | 220-240V-1-50HZ | ||||||
| MLZ026T5LP9 | 3.5 | 220-240V-1-50HZ | ||||||
| MLZ015T4LP9 | 2 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ019T4LP9 | 2.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ571T4LP9 | 3 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ026T4LP9 | 3.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ030T4LC9 | 4 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ038T4LC9 | 5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ045T4LC9 | 6 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ048T4LC9 | 7 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ058T4LC9 | 7.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ066T4LC9 | 9 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ076T4LC9 | 10 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| *MLM series general-purpose lubricating oil is PVE ugly oil, refrigerant R404A/R134A/R507/R22 | ||||||||
Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Installation Type: | Movable Type |
|---|---|
| Lubrication Style: | Lubricated |
| Cylinder Position: | Vertical |
| Model: | Hrh041u4lp6 |
| Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2024-02-24
China Good quality Danfos Scroll Parts Air Cooler Refrigeration Compressor Danfos 50Hz R22 Single Hlm068t4 in Stock with Good quality
Product Description
| Hermetic piston compressor, MT/Z medium and high temperature compressor specifications | ||||||||
| Rated Performance R22,R407C-50HZ | ||||||||
| Model | Rated Performance* MT-R22 | Rated Performance** MTZ-R407C | ||||||
| Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | |
| MT/MTZ 18 JA | 3881 | 1.45 | 2.73 | 2.68 | 3726 | 1.39 | 2.47 | 2.68 |
| MT/MTZ 22 JC | 5363 | 1.89 | 3.31 | 2.84 | 4777 | 1.81 | 3.31 | 2.64 |
| MT/MTZ 28 JE | 7378 | 2.55 | 4.56 | 2.89 | 6137 | 2.35 | 4.39 | 2.61 |
| MT/MTZ 32 JF | 8064 | 2.98 | 4.97 | 2.70 | 6941 | 2.67 | 5.03 | 2.60 |
| MT/MTZ 36 JG | 9272 | 3.37 | 5.77 | 27.5 | 7994 | 3.12 | 5.71 | 2.56 |
| MT/MTZ 40 JH | 1571 | 3.85 | 6.47 | 2.72 | 9128 | 3.61 | 6.45 | 2.53 |
| MT/MTZ 44 HJ | 11037 | 3.89 | 7.37 | 2.84 | 9867 | 3.63 | 6.49 | 2.72 |
| MT/MTZ 50 HK | 12324 | 4.32 | 8.46 | 2.85 | 11266 | 4.11 | 7.34 | 2.74 |
| MT/MTZ 56 HL | 13771 | 5.04 | 10.27 | 2.73 | 12944 | 4.69 | 8.36 | 2.76 |
| MT/MTZ 64 HM | 15820 | 5.66 | 9.54 | 2.79 | 14587 | 5.25 | 9.35 | 2.78 |
| MT/MTZ 72 HN | 17124 | 6.31 | 10.54 | 2.71 | 16380 | 5.97 | 10.48 | 2.74 |
| MT/MTZ 80 HP | 19534 | 7.13 | 11.58 | 2.74 | 18525 | 6.83 | 11.83 | 2.71 |
| MT/MTZ 100 HS | 23403 | 7.98 | 14.59 | 2.93 | 22111 | 7.85 | 13.58 | 2.82 |
| MT/MTZ 125 HU | 3571 | 10.66 | 17.37 | 2.85 | 29212 | 10.15 | 16.00 | 2.88 |
| MT/MTZ 144 HV | 34340 | 11.95 | 22.75 | 2.87 | 32934 | 11.57 | 18.46 | 2.85 |
| MT/MTZ 160 HW | 38273 | 13.39 | 22.16 | 2.86 | 37386 | 13.28 | 21.40 | 2.82 |
| MTM/MTZ200 HSS | 46807 | 15.97 | 29.19 | 2.93 | 43780 | 15.54 | 26.90 | 2.82 |
| MTM/MTZ250HUU | 6 0571 | 21.33 | 34.75 | 2.85 | 57839 | 20.09 | 31.69 | 2.88 |
| MTM/MTZ288 HVV | 68379 | 23.91 | 45.50 | 2.87 | 65225 | 22.92 | 36.56 | 2.85 |
| MTM/MTZ 320 HWW | 76547 | 26.79 | 44.32 | 2.86 | 74571 | 26.30 | 42.37 | 2.81 |
| Rated Performance*High Efficiency CompressorR22-50HZ | ||||
| Model | Capacity/(W) | Input Power (KW) | Inputcuprret/(A) | COP(W/W) |
| MT 45 HJ | 10786 | 3.62 | 6.86 | 2.98 |
| MT 51 HK | 12300 | 4.01 | 7.86 | 3.07 |
| MT 57 HL | 13711 | 4.54 | 9.24 | 3.02 |
| MT 65 HM | 15763 | 5.23 | 8.81 | 3.01 |
| MT 73 HN | 17863 | 5.98 | 9.99 | 2.99 |
| MT 81 HP | 25718 | 6.94 | 11.27 | 2.93 |
| R134a,R404A,R507-50Hz | ||||||||
| Model | Rated Performance* R134A | Rated Performance**R404A,R507-50HZ | ||||||
| Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | Capacity(W) | Input Power (KW) | Input current(A) | COP (W/W) | |
| MT/MTZ 18 JA | 2553 | 0.99 | 2.19 | 2.58 | 1865 | 1.2 | 2.47 | 1.56 |
| MT/MTZ22 JC | 3352 | 1.20 | 2.51 | 2.80 | 2673 | 1.56 | 2.96 | 1.71 |
| MT/MTZ 28 JE | 4215 | 1.53 | 3.30 | 2.75 | 3343 | 1.95 | 3.80 | 1.72 |
| MT/MTZ 32 JF | 4951 | 1.87 | 3.94 | 2.65 | 3747 | 2.28 | 4.51 | 1.64 |
| MT/MTZ 36 JG | 6005 | 2.13 | 4.09 | 2.81 | 4371 | 2.66 | 4.91 | 1.64 |
| MT/MTZ 40 JH | 6398 | 2.33 | 4.89 | 2.74 | 4889 | 3.00 | 5.36 | 1.63 |
| MT/MTZ 44 HJ | 6867 | 2.52 | 5.65 | 2.72 | 5152 | 3.16 | 6.37 | 1.63 |
| MT/MTZ 50 HK | 8071 | 2.88 | 5.50 | 2.80 | 6152 | 3.61 | 6.53 | 1.70 |
| MT/MTZ 56 HL | 9069 | 3.21 | 5.83 | 2.82 | 7001 | 4.00 | 7.07 | 1.75 |
| MT/MTZ 64 HM | 1571 | 3.62 | 6.96 | 2.86 | 8132 | 4.54 | 8.30 | 1.79 |
| MT/MTZ 72 HP | 11853 | 4.01 | 7.20 | 2.96 | 9153 | 4.99 | 8.64 | 1.84 |
| MT/MTZ 80 HP | 13578 | 4.63 | 8.45 | 2.93 | 10524 | 5.84 | 10.12 | 1.80 |
| MT/MTZ 100 HS | 15529 | 5.28 | 10.24 | 2.94 | 12571 | 6.83 | 12.16 | 1.76 |
| MT/MTZ 125 HU | 19067 | 6.29 | 10.80 | 3.03 | 15714 | 8.53 | 13.85 | 1.84 |
| MT/MTZ 144 HV | 23620 | 7.83 | 13.78 | 3.02 | 18076 | 9.74 | 16.25 | 1.86 |
| MT/MTZ 160 HW | 25856 | 8.57 | 14.67 | 3.02 | 25713 | 11.00 | 17.94 | 1.84 |
| MTM/MTZ200 HSS | 3571 | 10.45 | 20.28 | 2.94 | 23800 | 13.53 | 24.06 | 1.76 |
| MTM/MTZ 250 HUU | 37746 | 12.45 | 21.38 | 3.03 | 31121 | 16.88 | 27.43 | 1.84 |
| MTM/MTZ288 HVV | 46773 | 15.49 | 27.29 | 3.02 | 35779 | 19.28 | 32.18 | 1.86 |
| MTM/MTZ 320 HWW | 51169 | 16.98 | 29.06 | 3.01 | 40093 | 21.76 | 35.51 | 1.84 |
| 50HZ DATA | |||||||||||
| Model | 50Hz | Nominal Cooling Capacity/Capacity | Input Power | COP | E.E.R. | c Displacement | Displacement | Injection flow | d Net.W | ||
| TR | W | Btu/h | KW | W/W | Btu/h/W | cm³/rev | m3/h | dm3 | kg | ||
| R22 Single | Sm084 | 7 | 20400 | 69600 | 6.12 | 3.33 | 11.4 | 114.5 | 19.92 | 3.3 | 64 |
| SM090 | 7.5 | 21800 | 74400 | 6.54 | 3.33 | 11.4 | 120.5 | 20.97 | 3.3 | 65 | |
| SM100 | 8 | 23100 | 79000 | 6.96 | 3.33 | 11.3 | 127.2 | 22.13 | 3.3 | 65 | |
| SM110 | 9 | 25900 | 88600 | 7.82 | 3.32 | 11.3 | 144.2 | 25.09 | 3.3 | 73 | |
| SM112 | 9.5 | 27600 | 94400 | 7.92 | 3.49 | 11.9 | 151.5 | 26.36 | 3.3 | 64 | |
| SM115 | 9.5 | 28000 | 95600 | 8.31 | 3.37 | 11.5 | 155.0 | 26.97 | 3.8 | 78 | |
| SM120 | 10 | 35710 | 157100 | 8.96 | 3.36 | 11.5 | 166.6 | 28.99 | 3.3 | 73 | |
| SM124 | 10 | 31200 | 106300 | 8.75 | 3.56 | 12.2 | 169.5 | 29.5 | 3.3 | 64 | |
| SM125 | 10 | 35710 | 157100 | 8.93 | 3.37 | 11.5 | 166.6 | 28.99 | 3.8 | 78 | |
| SM147 | 12 | 36000 | 123000 | 10.08 | 3.58 | 12.2 | 193.5 | 33.7 | 3.3 | 67 | |
| SM148 | 12 | 36100 | 123100 | 10.80 | 3.34 | 11.4 | 199.0 | 34.60 | 3.6 | 88 | |
| SM160 | 13 | 39100 | 133500 | 11.60 | 3.37 | 11.5 | 216.6 | 37.69 | 4.0 | 90 | |
| SM161 | 13 | 39000 | 133200 | 11.59 | 3.37 | 11.5 | 216.6 | 37.69 | 3.6 | 88 | |
| SM175 | 14 | 42000 | 143400 | 12.46 | 3.37 | 11.5 | 233.0 | 40.54 | 6.2 | 100 | |
| SM/SY185 | 15 | 45500 | 155300 | 13.62 | 3.34 | 11.4 | 249.9 | 43.48 | 6.2 | 100 | |
| SY240 | 20 | 61200 | 2 0571 0 | 18.20 | 3.36 | 11.5 | 347.8 | 60.50 | 8.0 | 150 | |
| SY300 | 25 | 78200 | 267000 | 22.83 | 3.43 | 11.7 | 437.5 | 76.10 | 8.0 | 157 | |
| SY380 | 30 | 94500 | 322700 | 27.4 | 3.46 | 11.8 | 531.2 | 92.40 | 8.4 | 158 | |
| R107C Single | SZ084 | 7 | 19300 | 66000 | 6.13 | 3.15 | 10.7 | 114.5 | 19.92 | 3.3 | 64 |
| SZ090 | 7.5 | 20400 | 69600 | 6.45 | 3.16 | 10.8 | 120.5 | 20.97 | 3.3 | 65 | |
| SZ100 | 8 | 21600 | 73700 | 6.84 | 3.15 | 10.8 | 127.2 | 22.13 | 3.3 | 65 | |
| SZ110 | 9 | 24600 | 84000 | 7.76 | 3.17 | 10.8 | 144.2 | 25.09 | 3.3 | 73 | |
| SZ115 | 9.5 | 26900 | 91700 | 8.49 | 3.16 | 10.8 | 155.0 | 26.97 | 3.8 | 78 | |
| SZ120 | 10 | 28600 | 97600 | 8.98 | 3.18 | 10.9 | 166.6 | 28.99 | 3.3 | 73 | |
| SZ125 | 10 | 28600 | 97500 | 8.95 | 3.19 | 10.9 | 166.6 | 28.99 | 3.8 | 78 | |
| SZ148 | 12 | 35100 | 119800 | 10.99 | 3.19 | 10.9 | 199.0 | 34.60 | 3.6 | 88 | |
| SZ160 | 13 | 38600 | 131800 | 11.77 | 3.28 | 11.2 | 216.6 | 37.69 | 4.0 | 90 | |
| SZ161 | 13 | 37900 | 129500 | 11.83 | 3.21 | 10.9 | 216.6 | 37.69 | 3.6 | 88 | |
| SZ175 | 14 | 45710 | 136900 | 12.67 | 3.17 | 10.8 | 233.0 | 40.54 | 6.2 | 100 | |
| SZ185 | 15 | 43100 | 147100 | 13.62 | 3.16 | 10.8 | 249.9 | 43.48 | 6.2 | 100 | |
| SZ240 | 20 | 59100 | 201800 | 18.60 | 3.18 | 10.9 | 347.8 | 60.50 | 8.0 | 150 | |
| SZ300 | 25 | 72800 | 248300 | 22.70 | 3.20 | 10.9 | 437.5 | 76.10 | 8.0 | 157 | |
| SZ380 | 30 | 89600 | 305900 | 27.60 | 3.25 | 11.1 | 431.2 | 92.40 | 8.4 | 158 | |
| Model | Nominal Cooling Capacity 60Hz | Nominal Cooling Capacity/Capacity | Input Power | maximum rated current | COP | Displacement | Displacement | Injection flow | Net.W | |||
| TR | W | Btu/h | kW | MCC | COP W/W EERBtu/h/W | cmVrev | m3/h | dm3 | kg | |||
| R22 | HRM032U4 | 2.7 | 7850 | 26790 | 2.55 | 9.5 | 3.08 | 10.5 | 43.8 | 7.6 | 1.06 | 31 |
| HRM034U4 | 2.8 | 8350 | 28490 | 2.66 | 9.5 | 3.14 | 10.5 | 46.2 | 8.03 | 1.06 | 31 | |
| HRM038U4 | 32 | 9240 | 31520 | 2.94 | 10.0 | 3.14 | 10.7 | 46.2 | 8.03 | 1.06 | 31 | |
| HRM040U4 | 3.3 | 9710 | 33120 | 2.98 | 10 | 3.26 | 11.1 | 54.4 | 9.47 | 1.06 | 31 | |
| HRM042U4 | 35 | 10190 | 34770 | 3.13 | 11.0 | 3.26 | 11.1 | 57.2 | 9.95 | 1.06 | 31 | |
| HRM045U4 | 3.8 | 10940 | 37310 | 3.45 | 12 | 3.17 | 10.8 | 61.5 | 10.69 | 1.33 | 31 | |
| HRM047U4 | 3.9 | 11500 | 39250 | 3.57 | 12.0 | 3.23 | 11.0 | 64.1 | 11.15 | 1.33 | 31 | |
| HRM048U4 | 4 | 11510 | 39270 | 3.57 | 12.5 | 3.23 | 11 | 64.4 | 11.21 | 1.57 | 37 | |
| HRM051T4 | 4.3 | 12390 | 44280 | 3.67 | 13.0 | 3.37 | 11.5 | 68.8 | 11.98 | 1.57 | 37 | |
| HRM051U4 | 4.3 | 12800 | 43690 | 3.83 | 13 | 3.34 | 11.4 | 68.8 | 11.98 | 1.57 | 37 | |
| HRM054U4 | 4.5 | 13390 | 45680 | 3.97 | 13.1 | 3.37 | 11.5 | 72.9 | 12.69 | 1.57 | 37 | |
| HRM058U4 | 4.8 | 14340 | 48930 | 4.25 | 15 | 3.37 | 11.5 | 78.2 | 13.6 | 1.57 | 37 | |
| HRM060T4 | 5.0 | 14570 | 49720 | 4.28 | 15.0 | 3.40 | 11.6 | 81.0 | 14.09 | 1.57 | 37 | |
| HRM060U4 | 5.0 | 14820 | 5 0571 | 4.4 | 15 | 3.37 | 11.5 | 81 | 14.09 | 1.57 | 37 | |
| HLM068T4 | 5.7 | 16880 | 57580 | 5.00 | 15.0 | 3.37 | 11.5 | 93.1 | 16.20 | 1.57 | 37 | |
| HLM072T4 | 6.0 | 17840 | 6 0571 | 5.29 | 15 | 3.37 | 11.5 | 98.7 | 17.2 | 1.57 | 37 | |
| HLM075T4 | 6.3 | 18430 | 62880 | 5.37 | 16.0 | 3.43 | 11.7 | 102.8 | 17.88 | 1.57 | 37 | |
| HLM081T4 | 6.8 | 19890 | 67880 | 5.8 | 17 | 3.43 | 11.7 | 110.9 | 19.3 | 1.57 | 37 | |
| HCM094T4 | 7.8 | 23060 | 78670 | 6.80 | 21.0 | 3.39 | 11.6 | 126.0 | 21.93 | 2.66 | 44 | |
| HCM109T4 | 9.1 | 26690 | 91070 | 7.77 | 24 | 3.43 | 11.7 | 148.8 | 25.89 | 2.66 | 44 | |
| HCM120T4 | 10.0 | 29130 | 99390 | 8.51 | 25.0 | 3.42 | 11.7 | 162.4 | 28.26 | 2.66 | 44 | |
| R407C | HRP034T4 | 2.8 | 7940 | 27080 | 2.68 | 9.5 | 2.96 | 10.1 | 46.2 | 8 | 1.06 | 31 |
| HRP038T4 | 3.2 | 8840 | 30150 | 2.82 | 11 | 3.14 | 10.7 | 51.6 | 8.98 | 1.06 | 31 | |
| HRP040T4 | 3.3 | 9110 | 31080 | 3.14 | 11.5 | 2.9 | 9.9 | 54.4 | 9.47 | 1.06 | 31 | |
| HRP042T4 | 3.5 | 9580 | 32680 | 3.3 | 10 | 2.9 | 9.9 | 57.2 | 9.95 | 1.06 | 31 | |
| HRP045T4 | 3.8 | 1571 | 36890 | 3.58 | 12 | 3.02 | 10.3 | 61.5 | 10.69 | 1.33 | 31 | |
| HRP047T4 | 3.9 | 11130 | 37980 | 3.69 | 12 | 3.02 | 10.3 | 64.1 | 11.15 1.33 | 31 | ||
| HRP048T4 | 4.0 | 11100 | 37880 | 3.35 | 12 | 3.31 | 11.3 | 64.4 | 1L21 | 1.57 | 37 | |
| HRP051T4 | 4.3 | 12120 | 41370 | 3.83 | 13 | 3.17 | 10.8 | 68.8 | 11.98 | 1.57 | 37 | |
| HRP054T4 | 4.5 | 12570 | 42880 | 3.97 | 12.5 | 3.17 | 10.8 | 72.8 | 12.66 | 1.57 | 37 | |
| HRP058T4 | 4.8 | 13470 | 45970 | 4.25 | 14.0 | 3.17 | 10.8 | 78.2 | 13.6 | 1.57 | 37 | |
| HRP060T4 | 5.0 | 13860 | 47280 | 4.26 | 15 | 3.25 | 11.1 | 81 | 14.09 | 1.57 | 37 | |
| HLP068T4 | 5.7 | 15700 | 53560 | 5.10 | 15.0 | 3.08 | 10.5 | 93.1 | 16.20 | 1.57 | 37 | |
| HLP072T4 | 6.0 | 16810 | 57350 | 5.16 | 15 | 3.26 | 11.1 | 98.7 | 17.17 | 1.57 | 37 | |
| HLP075T4 | 6.3 | 18040 | 61550 | 5.54 | 16.0 | 3.26 | 11-1 | 102.8 | 17.88 | 1.57 | 37 | |
| HLP081T4 | 6.8 | 18600 | 63470 | 5,66 | 17 | 3.28 | 11,2 | 110,9 | 19,30 | 1,57 | 37 | |
| HCP094T4 | 7.8 | 21590 | 73660 | 6.63 | 21.0 | 3.26 | 11.1 | 126.0 | 21.93 | 2.66 | 44 | |
| HCP109T4 | 9.1 | 25070 | 85550 | 7.77 | 24 | 3.23 | 11 | 148.8 | 25.89 | 2.66 | 44 | |
| HCP120T4 | 10.0 | 27370 | 93400 | 8.47 | 25.0 | 3.23 | 11.0 | 162.4 | 28.26 | 2.66 | 44 | |
| R410A | HRH571U4 | 2.4 | 7120 | 24310 | 2.43 | 10 | 2.93 | 10 | 27.8 | 4.84 | 1.06 | 31 |
| HRH031U4 | 26 | 7530 | 25710 | 2.67 | 10.0 | 2.82 | 9.62 | 29.8 | 5.19 | 1.06 | 31 | |
| HRH032U4 | 2.7 | 7670 | 26170 | 2.75 | 10 | 2.79 | 9.51 | 30.6 | 5.33 | 1.06 | 31 | |
| HRH034U4 | 2.8 | 8500 | 29000 | 2.90 | 10.0 | 2.93 | 10.0 | 33.3 | 5.75 | 1.06 | 31 | |
| HRH036U4 | 3 | 8820 | 30110 | 3.13 | 10 | 2.82 | 9.62 | 34.7 | 6.04 | 1.06 | 31 | |
| HRH038U4 | 3.2 | 9250 | 31560 | 3.35 | 12.0 | 2.76 | 9.41 | 36.5 | 6.36 | 1.06 | 32 | |
| HRH040U4 | 3.3 | 15710 | 34810 | 3.58 | 12 | 2.85 | 9.72 | 39.6 | 6.9 | 1.33 | 32 | |
| HRH041U4 | 3.3 | 10050 | 34300 | 3.43 | 12.5 | 2.93 | 10 | 39.3 | 6.8 | 1.57 | 37 | |
| HRH044U4 | 3.7 | 1 0571 | 36940 | 3.92 | 13.5 | 2.76 | 9.41 | 42.6 | 7.41 | 1.57 | 37 | |
| HRH049U4 | 4.1 | 12110 | 41320 | 4.04 | 13.5 | 2.99 | 10.22 | 47.4 | 8.24 | 1.57 | 37 | |
| HRH051U4 | 4.3 | 12860 | 43890 | 4.21 | 13 | 3.05 | 10.42 | 49.3 | 5.58 | 1.57 | 37 | |
| HRH054U4 | 4.5 | 13340 | 45510 | 4.41 | 15.0 | 3.02 | 10.32 | 52.1 | 9.07 | 1.57 | 37 | |
| HRH056U4 | 4.7 | 13830 | 47200 | 4.58 | 15 | 3.02 | 1031 | 54.1 | 9.42 | 1.57 | 37 | |
| HLH061T4 | 5.1 | 15210 | 51880 | 4.89 | 15.0 | 3.11 | 1061 | 57.8 | 10.10 | 1.57 | 37 | |
| HLH068T4 | 5.7 | 16880 | 57610 | 5.26 | 19 | 3.21 | 1096 | 64.4 | 11.21 | 1.57 | 37 | |
| HLJ072T4 | 6.0 | 17840 | 60900 | 5.56 | 19.0 | 3.21 | 11.0 | 68.0 | 11.82 | 1.57 | 37 | |
| HLJ075T4 | 6.3 | 18600 | 63490 | 5.77 | 18 | 3.22 | 11 | 70.8 | 12.32 | 1.57 | 37 | |
| HLJ083T4 | 6.9 | 20420 | 69690 | 6.28 | 19.0 | 3.25 | Hl | 78.1 | 13.59 | 1.57 | 37 | |
| HCJ090T4 | 7.5 | 22320 | 76190 | 7.19 | 19 | 3.11 | 10.6 | 86.9 | 15.11 | 2.66 | 44 | |
| HCJ105T4 | 8.8 | 26100 | 89090 | 8.25 | 25.0 | 3.16 | 10.8 | 101.6 | 17.68 | 2.66 | 44 | |
| HCJ120T4 | 10 | 29610 | 157180 | 9.53 | 27 | 3.11 | 10.6 | 116.4 | 20.24 | 2.66 | 44 | |
| Model | HP | Voltage | ||||||
| MLM019T5LP9 | 2.5 | 220-240V-1-50HZ | ||||||
| MLM571T5LP9 | 3 | 220-240V-1-50HZ | ||||||
| MLM026T5LP9 | 3.5 | 220-240V-1-50HZ | ||||||
| MLM015T4LP9 | 2 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM019T4LP9 | 2.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM571T4LP9 | 3 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM026T4LP9 | 3.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM030T4LC9 | 4 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM038T4LC9 | 5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM045T4LC9 | 6 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM048T4LC9 | 7 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM058T4LC9 | 7.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM066T4LC9 | 9 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLM076T4LC9 | 10 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| *MLM series general-purpose lubricating oil is AB alkyl benzene oil, the refrigerant is R22. | ||||||||
| Model | HP | Voltage | ||||||
| MLZ019T5LP9 | 2.5 | 220-240V-1-50HZ | ||||||
| MLZ571T5LP9 | 3 | 220-240V-1-50HZ | ||||||
| MLZ026T5LP9 | 3.5 | 220-240V-1-50HZ | ||||||
| MLZ015T4LP9 | 2 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ019T4LP9 | 2.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ571T4LP9 | 3 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ026T4LP9 | 3.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ030T4LC9 | 4 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ038T4LC9 | 5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ045T4LC9 | 6 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ048T4LC9 | 7 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ058T4LC9 | 7.5 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ066T4LC9 | 9 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| MLZ076T4LC9 | 10 | 380-415V-3-50Hz&460V-3-60Hz | ||||||
| *MLM series general-purpose lubricating oil is PVE ugly oil, refrigerant R404A/R134A/R507/R22 | ||||||||
Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Installation Type: | Movable Type |
|---|---|
| Lubrication Style: | Lubricated |
| Cylinder Position: | Vertical |
| Model: | Hlm068t4 |
| Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2024-02-04
China best DC12V 80W Low Noise Moveable Single Cylinder Car Air Compressor Digital Display supplier
Product Description
Product Description
Single Cylinder Air Compressor
Inflate standard vehicle tire within 3 minutes
ACCURATE PRESSURE
DIGITAL DISPLAY
AUTO STOP
QUICK CONNCTOR
EMERGENCY LIGHTING
METAL CYLINDER
Are tire inflators worth it? A portable tire inflator is a valuable tool if you need a quick fix for low tire pressure or you’re performing regular car maintenance.
Portable tire inflators are also known as tire air pumps. They provide an easy way to keep your car tires inflated to the right pressure
These devices seal the punctured tire and then reinflate it with pressurized gas, providing enough pressure to allow the auto to be driven for a short period at low speed. This allows the motorist to have the damaged tire professionally repaired or replaced, avoiding the need to replace the wheel at the roadside.
Company Profile
ZheJiang Lanyoung Electromechanical Co., Ltd was originated from 1988, established in 2001, it owns ZheJiang Lanyoung Electromechanical Co., Ltd HangZhouShan City Branch and ZHangZhoug HangZhouang Electromechanical Co., Ltd, won the honorary title of “top 10 brands of brand network in 2019” and “excellent demonstration unit of ZHangZhoug focusing on quality and brand-making”. We are a modern company combining mechanical and electrical products research, development, production, sales and service with a long history and rich experience in production. We are experts of water pumps, motors, and fans products, the main products are stainless steel pumps, plastic corrosion-resistant submersible pumps, DC electric pumps, self-priming pump, machine tool cooling pumps, corrosion resistant pumps, sewage pumps, oil-immersed submersible pumps, blowers, medium pressure fan, multi-wing fan and so on, and we also possess practical new-type patent for a mini submersible pump. The above products can be all customized according to customer’s requirement. We have special advantages that is different from other manufacturing companies.
Product Parameters
| MODEL | TYPE |
| YD-929SX-22A | Digital display |
| YD-787-19 | Pointer table |
| YD-787SX-19 | Digital display |
| YD-787SX-22 | |
| YD-9325 | Dual power battery platform
20V lithium battery+cigarette lighter power supply |
| YD-767-19 | Pointer table |
| YD-767SX-19 | Digital display |
| YD-767SX-22 |
Packaging & Shipping
Certifications
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 1 Year |
|---|---|
| Warranty: | 1 Year |
| Certification: | RoHS, CE |
| Samples: |
US$ 7/Piece
1 Piece(Min.Order) | Order Sample yellow or red
|
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2024-02-02
China best CHINAMFG Heavy Duty Diesel Rotary Screw Air Compressor for Construction 630cfm 8bar Single Phase CHINAMFG air compressor repair near me
Product Description
Oppair Heavy Duty Diesel Rotary Screw Air Compressor for Construction 630Cfm 8bar single phase screw compressor
FAQ~
Q1: Why do customers choose us?
A: ZheJiang CHINAMFG Machinery Manufacturing Co., Ltd. has a history of 16 years. We specialize in the production of screw air compressors. We warmly welcome your small trial orders for quality or market testing, and we offer special services.
Q2: Are you a manufacturer or a trading company?
A: We are a professional manufacturer with a large modern factory in HangZhou, China. OEM and ODM services can be accepted.
Q3: What is your delivery time?
A: 380V 50HZ We can ship within 10 days. It takes 20 days for other voltages, if you need to rush, please contact our sales staff in advance.
Q4: How long is the warranty period of your air compressor?
A: One year for the whole machine and 2 years for the screw host, excluding consumables.
Q5: How long can your air compressor last?
A: More than 10 years under normal use.
Q6: What are the payment terms?
A: T/T, L/C, Western Union, Credit Card, etc. We can also accept USD, RMB, EUR and other currencies.
Q7: Will you provide some spare parts for the machine?
A: Yes, of course.
Q8: Can you accept OEM orders?
A: Yes, with a professional design team, OEM orders are very welcome.
Q9: What kind of trade terms can you accept?
A: Available trade terms: FOB, CIF, EXW, etc.
Q10: How about the product packaging?
A: We strictly pack our products in standard airworthy boxes.
| Oppair Heavy Duty Diesel Rotary Screw Air Compressor for Construction 630Cfm 8bar single phase screw compressor |
| After-sales Service: | 1year |
|---|---|
| Warranty: | 1year |
| Lubrication Style: | Oil-less |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Samples: |
US$ 19846/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
.webp)
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2023-10-31