Product Description
1.Adopt famous imported air ends, so it attains such advantages, high precision, smooth operation, low noise,high reliability, long lifespan, low maintenance cost, low oil cost ect.
2. A set of air-flow control system is adopted from Austria with high stability.
3.Safe in operation, it is explosive-proof and prevents from over-loading,short circuit and electricity leak. It’s warning system functions under the condition of over temperature, clogging of air filter, oil filter and oil separation filter. In addition, it shuts down in condition of over temperature. The triple protection units as volume adjustor pressure-control and safety valve are applied to prevent it from working under the condition of over pressure.
Function:
The pneumatic tools and spraying equipment can be used in CHINAMFG tunnel. It often confronts the problem of low efficiency of compressed air in the pit. So the pressure decreases for the long pipeline. While this kind of air compressor can operate safely in the development area under the pit and moves CHINAMFG along with the CHINAMFG process. It keeps high pressure, raising the efficiency of pneumatic machinery by 30% even 1 times and decreasing the electricity consumption by 30%. In additional, it also saves the pipeline.This kind of air-compressor is also applicable in the funnel construction engineering.
Contact details:
Company name:HangZhou CHINAMFG Compressor Co.,Ltd
Company address:No.172,NanChe Road,Xihu (West Lake) Dis.cheng district,HangZhou city.
Website:http://compscompressor
Sales manager:Mr Rick
| After-sales Service: | 12 months |
|---|---|
| Warranty: | 12 months |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.


editor by CX 2023-11-13
China Custom 160kw Low Pressure Two-Stage Compression Permanent Magnet Variable Frequency Screw Air Compressor portable air compressor
Product Description
Product Description
Product Parameters
| Model | Motor Power | Maximum Working Pressure | Free Air Delivery | Air Outlet Pipe Diameter | Weight | Dimensions(L*W*H) | |||
| kW | hp | bar(g) | psig | m³/min | cfm | kg | mm | ||
| BG50APMII | 37 | 50 | 4 | 58 | 10.3 | 364 | G2″ | 1600 | 2100*1300*1650 |
| 5 | 73 | 9.5 | 335 | ||||||
| BG60APMII | 45 | 60 | 4 | 58 | 12.2 | 431 | G2″ | 1650 | 2100*1300*1650 |
| 5 | 73 | 11.5 | 406 | ||||||
| BG75APMII | 55 | 75 | 4 | 58 | 15.5 | 547 | G2″ | 1700 | 2100*1300*1650 |
| 5 | 73 | 14.5 | 512 | ||||||
| BG100APMII | 75 | 100 | 4 | 58 | 19.5 | 689 | DN80 | 2700 | 2500*1650*1900 |
| 5 | 73 | 19.0 | 671 | ||||||
| BG125APMII | 90 | 125 | 4 | 58 | 24.5 | 865 | DN80 | 2800 | 2500*1650*1900 |
| 5 | 73 | 23.0 | 812 | ||||||
| BG150APMII | 110 | 150 | 4 | 58 | 28.0 | 989 | DN80 | 2900 | 2500*1650*1900 |
| 5 | 73 | 27.5 | 971 | ||||||
| BG180APMII | 132 | 180 | 4 | 58 | 36.0 | 1271 | DN100 | 3100 | 3000*1900*1950 |
| 5 | 73 | 34.0 | 1201 | ||||||
| BG220APMII | 160 | 220 | 4 | 58 | 46.0 | 1624 | DN100 | 4400 | 3000*1900*1950 |
| 5 | 73 | 42.0 | 1483 | ||||||
| BG250APMII | 185 | 250 | 4 | 58 | 52.0 | 1836 | DN125 | 5500 | 3600*2200*2200 |
| 5 | 73 | 45.0 | 1589 | ||||||
| BG270APMII | 200 | 270 | 4 | 58 | 57.0 | 2013 | DN125 | 6000 | 3600*2200*2200 |
| 5 | 73 | 51.5 | 1819 | ||||||
| BG300APMII | 220 | 300 | 4 | 58 | 62.0 | 2190 | DN150 | 6800 | 4000*2300*2300 |
| 5 | 73 | 55.0 | 1942 | ||||||
| BG340APMII | 250 | 340 | 4 | 58 | 65.0 | 2295 | DN150 | 7500 | 4000*2300*2300 |
| 5 | 73 | 61.0 | 2154 | ||||||
Company Profile
Wallboge is a high-tech enterprise and is considered 1 of the leading manufacturers of air compressor products in China. Our goal is to provide exceptional customer service coupled with quality products and energy saving solutions.
Wallboge’ s primary businesses focus in following key areas:
Integrated screw air compressor for laser cutting
Permanent magnet variable frequency screw air compressor
Two-stage compression permanent magnet variable frequency screw air compressor
Low pressure two-stage compression permanent magnet variable frequency screw air compressor
Low pressure permanent magnet variable frequency screw air compressor
Water-lubricated oil-free screw air compressor
Fixed speed screw air compressor
Oil-free screw blower
Screw vacuum pump
At Wallboge, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. CHINAMFG has been exporting to more than 150 countries across the globe.
Wallboge continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly. Wallboge’ s vision is to be a world-renowned high-end energy-saving machinery brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff, committed to continuously satisfying the needs of global companies by providing a full range of industrial air compression solutions.
Certifications
Exhibitions
After Sales Service
1. 24/7 after sales service in different languages.
2. Online instruction for installation and commissioning.
3. On-site instruction for installation and commissioning provided by well-trained engineers or local authorized service center.
4. CHINAMFG agents and after sales service available.
Our Advantages
1. Proven product quality.
2. Factory direct prices.
3. On-time delivery.
4. Prompt technical support in different languages before sales, in sales and after sales.
5. Small orders accepted to check quality first.
6. OEM & ODM service available.
FAQ
Q1: Are you a factory or a trading company?
A1: We are a factory. Please check our Company Profile.
Q2: What is the exact address of your factory?
A2: No. 588, East Tonggang Road, Shaxi Town, HangZhou City, ZheJiang Province, China
Q3: What is your delivery time?
A3: For standard voltage, the delivery time is 15 working days after you confirm the order. For non-standard voltage, please contact our sales to confirm the delivery time.
Q4: What kind of payment terms do you accept?
A4: We accept T/T, L/C at sight.
Q5: How long is the warranty of your air compressor?
A5: 2 years for the whole air compressor except consumable spare parts.
Q6: How long could your air compressor be used?
A6: Generally, more than 10 years.
Q7: What is your MOQ requirement?
A7: 1 unit.
Q8: Can you offer OEM & ODM service?
A8: Yes, with a professional design team, we can offer OEM & ODM service.
| After-sales Service: | Engineers Available to Overseas Service. |
|---|---|
| Warranty: | 2 Years |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.


editor by CX 2023-11-07
China Good quality Diesel Engine Portable Screw 185 Cfm Air Compressor in Stock Lowest Price for Outdoor Project air compressor oil
Product Description
Product Description
Portable Compressor
1.Strong reliability: firm design ensures long – term reliability and durability of the equipment.
2.Easy maintenance: open door design, convenient for daily maintenance.
3.Low noise: Mobile locomotive hood and hood design have a strong noise reduction and attraction effect.
Details Images
Ground Engineering Drilling
Pneumatic rock drills,block cutters,dewatering pumps and hand-held pneumatic breakers. They are suited for stabilization projects on roads and building sites,as well as basement and foundation excavation for apartment blocks and other buildings.
Blast Hole Drilling
Common applications include aggregate production for costruction stabilization,cement production in limestone quarries and open pit mining.
| Model: LUY150-15 | |||||
| Working pressure (bar) | Flow (m3/min) |
Noise sound level (at 7m distance, dBA) |
Fuel tank capaticy(L) | Compressor oil capaticy (L) | Outlet valves (qty; size) |
| 15 | 15 | 83±3 | 250 | 32 | 1*G3/4 1*G2 |
| Engine | |||||
| Engine maker | Engine model | Engine power(kW) | Norminal engine speed(rpm) | Unloading engine speed(rpm) | Engine inspiration |
| Yuchai | YC6A205-H300 | 151 | 2050 | 1200 | torbue charger |
| Dimension&Weight | |||||
| Box mounted | |||||
| Length(mm) | Width(mm) | Height(mm) | Weight(mm) | ||
| 2680 | 1660 | 1637 | 2350 | ||
| With undercarriage, adjustable 2 bar horizontally | |||||
| Length(mm) | Width(mm) | Height(mm) | Weight(kg) | ||
| 4322 | 1950 | 1980 | 2550 | ||
Company Profile
HangZhou CHINAMFG Drilling Equipment Co., Ltd. mainly provides holistic drilling solutions, serving the mining, stone crushing, water conservancy drilling industry, to help you solve the problem of drilling at high efficiency and low cost. We mainly provide mobile air compressors, drilling rigs, hammer, drill bit, crushers, underground water detector.We are your trustworthy partner.
FAQ
1.Is it difficult to operate and make the graph?
The instrument is easy to operate and we will send you the detailed operation manual via email.
The detector directly mapping with 1 button, no need computer drawing mapping.
2.What is the accuracy?
Our natural electric field instruments have been made for more than 10 years, with advanced technology and market test. We have obtained many invention patents. Our customer feedback rate reaches 100%. Accuracy over 95%.
3.How about after-sales service?
2 year warranty.Free data service for life.The professional geologist give the suggestions and 24hours online.
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-11-07
China wholesaler CHINAMFG Industrial Diesel Driven Portable Mobile Rotary Screw Air Compressor Xas88 with Hot selling
Product Description
Product
The air compressor is equipped with a separate 2-stage air filtration system to protect all components from the harsh conditions on the construction site.
Features
National III diesel engine emission standards.
Reliable and durable.
Superior performance.
Atlas Copco’s patented screw rotor design ensures low energy consumption and high performance.Suitable for harsh working conditions
High-performance chassis design.
Enhance your engine performance.
Using low quality oil may damage your engine. Our heavy-duty fuel filters protect your engine, enhance its performance and extend its life.
Extend the service life of your air compressor .
Protect your compressor with a double air filter.
The air compressor is equipped with a separate 2-stage air filtration system to protect all components from the harsh conditions on the construction site.
Product specifications series parameters
| Item | Atlas portable air compressor | |||
| 1 | Model | XATS156C | XAHS166C | XAS186C |
| 2 | Volume flow m3/min | 10 | 10 | 11.5 |
| 3 | Working pressure bar | 10.3 | 12 | 7 |
| 4 | Air compressor oil volume L | 23 | 25 | 25 |
| 5 | Tank volume L | 42 | ||
| 6 | Diesel tank volume L | 175 | ||
| 7 | Noisy grade db(A) | 80+3 | ||
| 8 | Diesel engine | Cummins | ||
| 9 | Model | QSB3.9-C130 | ||
| 10 | Air cylinder QTY | 4 | ||
| 11 | Engine kw | 95 | ||
| 12 | Full engine speed rpm | 2300 | ||
| 13 | Engine unloading speed rpm | 1700 | ||
| 14 | Overall Length (Trailer type) mm | 4120 | ||
| 15 | Overall Width mm | 1900 | ||
| 16 | Overall Height mm | 2000 | ||
| 17 | Overall Weight kg | 1680 | ||
| 18 | Exhaust valves QTYxsize | 1×1 1/2”, 1×3/4” | ||
FAQ
Q1: What’s your delivery time?
A: 15 days to produce, within 3 days if in stock.
Q2: What’s methods of payments are accepted?
A: We agree T/T ,L/C , West Union ,Money Gram ,Paypal.
Q3: What about the shipments and package?
A: 40′ container for 2 sets, 20′ container for 1 set,
Machine in nude packing, spare parts in standard export wooden box.
Q4: Have you got any certificate?
A:We have got ISO,CE certificate.
Q5: How to control the quality?
A: We will control the quality by ISO and CE requests.
Q6: Do you have after-sale service and warranty service ?
A: Yes, we have.We can supply instruction for operation and maintenance.If necessary, we can send our engineer to repair the machine in your company.
Warranty is 1 year for the machine.
Q7: Can I trust your company ?
A: Our company has been certificated by Chinese government,and verified by SGS Inspection Company
| After-sales Service: | Online |
|---|---|
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2023-11-03
China Best Sales Portable Heavy Duty Screw Air Compressor Driven by Diesel portable air compressor
Product Description
*Product Description
| MODEL | SUPC50-8 | SUPC75-10 | SUPC75-10 | SUPC160-10 | SUPC160-13-II | SUPC190-13 | SUPC190-15 | |
| Machine | ||||||||
| Free air delivery | m³/min | 4.5 | 6 | 5 | 12 | 15 | 15 | 13 |
| cfm | 160 | 215 | 178 | 428 | 535 | 535 | 465 | |
| Normal working pressure | bar | 8 | 8 | 10 | 10 | 13 | 13 | 15 |
| psi | 118 | 118 | 147 | 147 | 191 | 191 | 220 | |
| Dimentions (withou twobar) (mm) |
Length | 2500 | 2500 | 2500 | 3200 | 3200 | 3500 | 3500 |
| Width | 1750 | 1750 | 1750 | 1600 | 1600 | 1750 | 1750 | |
| Height | 2100 | 2100 | 2100 | 2000 | 2000 | 2200 | 2200 | |
| Weight | Kg | 1150 | 1150 | 1150 | 2200 | 2350 | 2500 | 2500 |
| Wheel qty | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
| Size and No. of outlet value | G1″*2 | G1″*2 | G1″*2 | G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
|
| Diesel | ||||||||
| Brand | XICHAI | XICHAI | XICHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | |
| Model | 4DW91-50GBG3U | 4DW93-75GG3U | 4DW93-75GG3U | YC4A160-H300 | YC4A160-H300 | YC6J190-H300 | YC6J190-H300 | |
| Rated power | Kw | 36.8 | 55 | 55 | 118 | 118 | 140 | 140 |
| hp | 50 | 75 | 75 | 160 | 160 | 190 | 190 | |
| No. of cylinders | 4 | 4 | 4 | 4 | 4 | 6 | 6 | |
| Engine speed | rpm | 2650 | 2400 | 2400 | 2200 | 2200 | 2200 | 2200 |
| Oil capacity | L | 5 | 7 | 7 | 11 | 11 | 15 | 15 |
| coolant capacity | L | 30 | 30 | 30 | 60 | 60 | 75 | 75 |
| Battary | V | 12 | 24 | 24 | 24 | 24 | 24 | 24 |
| Fuel tank capacity | L | 100 | 100 | 100 | 180 | 180 | 180 | 180 |
| MODEL | SUPC190-17 | SUPC190-15-II | SUPC220-15 | SUPC220-13-II | SUPC220-16-II | SUPC220-17-II | SUPC260-15-II | |
| Machine | ||||||||
| Free air delivery | m³/min | 10 | 15 | 15 | 17 | 15 | 13 | 22 |
| cfm | 357 | 535 | 535 | 608 | 535 | 465 | 786 | |
| Normal working pressure | bar | 17 | 15 | 15 | 13 | 16 | 17 | 15 |
| psi | 250 | 220 | 220 | 191 | 235 | 250 | 220 | |
| Dimentions (withou twobar) (mm) |
Length | 3500 | 3500 | 3500 | 3500 | 3500 | 3500 | 3700 |
| Width | 1750 | 1750 | 1750 | 1750 | 1750 | 1750 | 1900 | |
| Height | 2200 | 2200 | 2200 | 2200 | 2200 | 2200 | 2350 | |
| Weight | Kg | 2500 | 2650 | 3100 | 3200 | 3200 | 3200 | 3500 |
| Wheel qty | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
| Size and No. of outlet value | G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
|
| Diesel | ||||||||
| Brand | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCAI | |
| Model | YC6J190-H300 | YC6J190-H300 | YC6J220-T300 | YC6J220-T300 | YC6J220-T300 | YC6J220-T300 | YC6A260-H300 | |
| Rated power | Kw | 140 | 140 | 162 | 162 | 162 | 162 | 191 |
| hp | 190 | 190 | 220 | 220 | 220 | 220 | 260 | |
| No. of cylinders | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
| Engine speed | rpm | 2200 | 2200 | 2200 | 2200 | 2200 | 2200 | 2200 |
| Oil capacity | L | 15 | 15 | 20 | 20 | 20 | 20 | 24 |
| coolant capacity | L | 75 | 75 | 90 | 90 | 90 | 90 | 110 |
| Battary | V | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
| Fuel tank capacity | L | 180 | 180 | 220 | 220 | 220 | 220 | 220 |
| MODEL | SUPC260-17-II | SUPC260-22-II | SUPC300-13-II | SUPC300-17-II | SUPC300-25-II | SUPC420-25-II | SUPC430-24-II | SUPC500-25-II | |
| Machine | |||||||||
| Free air delivery | m³/min | 17 | 14 | 28 | 22 | 17 | 25 | 29 | 33 |
| cfm | 608 | 500 | 1000 | 786 | 608 | 893 | 1035 | 1180 | |
| Normal working pressure | bar | 17 | 22 | 13 | 17 | 25 | 25 | 24 | 25 |
| psi | 250 | 324 | 191 | 250 | 368 | 368 | 353 | 396 | |
| Dimentions (withou twobar) (mm) |
Length | 3700 | 3700 | 3900 | 3900 | 3900 | 3600 | 3600 | 3600 |
| Width | 1900 | 1900 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | |
| Height | 2350 | 2350 | 2400 | 2400 | 2400 | 2500 | 2500 | 2500 | |
| Weight | Kg | 3500 | 3600 | 4000 | 4100 | 4200 | 4500 | 4600 | 4700 |
| Wheel qty | 4 | 4 | 4 | 4 | 4 | ||||
| Size and No. of outlet value | G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G2″*1 |
G1″*1 G2″*1 |
G1″*1 G2″*1 |
G1″*1 G1 1/2″*1 G2 1/2″*1 |
G1″*1 G1 1/2″*1 G2 1/2″*1 |
G1″*1 G1 1/2″*1 G2 1/2″*1 |
|
| Diesel | |||||||||
| Brand | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | |
| YC6A260-H300 | YC6A260-H300 | YC6K560-KT31 | |||||||
| Rated power | Kw | 191 | 191 | 221 | 221 | 221 | 309 | 320 | 375 |
| hp | 260 | 260 | 300 | 300 | 300 | 420 | 430 | 500 | |
| No. of cylinders | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
| Engine speed | rpm | 2200 | 2200 | 2000 | 2000 | 2000 | 1900 | 1900 | 1900 |
| Oil capacity | L | 24 | 24 | 28 | 28 | 28 | 32 | 32 | 32 |
| coolant capacity | L | 110 | 110 | 140 | 140 | 140 | 180 | 180 | 180 |
| Battary | V | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
| Fuel tank capacity | L | 220 | 220 | 280 | 280 | 280 | 400 | 400 | 400 |
*Certifications
*Company Information
ZheJiang Compressor Import & Export Co.,Ltd is located in the logistics capital of China, 1 of the important birthplaces of Chinese civilization-HangZhou, ZheJiang Province. With professinal manufacturing experience and first -class comprehensive scientific and technological strength of the talent team, as the energy-saving compressor system leader and renowed in the industry.
We specializes in R & D and sales of power frequency ,permanent magnet frequency conversion ,two -stage compressor permanent magnet frequency conversion ,low -voltage and mobile screw air compressor . With a deep industry background , 1 step ahead ambition . With the professional enthusiasm for screw air compressor , team innovation , to meat the challenges of enterprise’s own determination and the rigorous attitude of excellence,products are strictly in accordance with IOS 9001 international quality procedures,to provide customers with energy -saving and reliable products .
We warmly welcomes people from all around the world to visit the company to guide the establishment of a wide range of business contacts and cooperation . Choosing HangZhou Atlas Air compressor Manufacturing Co.,Led.is to choose quality and service ,choose culture and taste ,choose a permanent and trustworthy partner !
*Packaging & Shipping
*Contact us
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2023-10-30
China Custom Germany Silent Portable Rotary Screw Air Compressor (11KW 300L 8bar) with Dryer, Filters and Tank arb air compressor
Product Description
HangZhou CHINAMFG Marine Equipment Co., Ltd. covers an area of 24600 square meters, located in jiangyan Economic Development Zone, fumin CHINAMFG Park, with comprehensive test bench and large lifting equipment test bench, is specialized in the production of Marine safety life-saving equipment enterprises.
The company has the leading technology, strict management, fine equipment, strictly by the China Classification Society CCSISO9001:2008 quality management system certification to ensure, the main production: Marine lifeboat/life raft landing gear, gravity inverted boom davit, free landing davit, gangway winch, lifeboat/rescue boat winch, Marine low, medium and high pressure air compressor and all types of fully enclosed/open lifeboat and rescue boat.
HangZhou CHINAMFG Marine Equipment Co., Ltd. is the production of maritime rescue equipment professional enterprise, main products are the life boat winch, the rescue boat winch, free fall type lifeboat launching device, gravity pour davit arm type, single arm liferaft lowered device, single arm boat/raft hanger and cranes, electric, pneumatic) ladder winch and Marine air compressor and various kinds of form a complete set of lifeboat.
Corporate culture: To build the world heavy industry carrier
— Corporate philosophy
Enterprise tenet: synchronizing with the world and consumers
Enterprise vision: strict management, sustainable development and satisfactory service
Enterprise values: The pursuit of quality The pursuit of Haihao
Enterprise spirit: Honesty, diligence and earnest
Haihao ships are interwoven with glory and dream, hardships and challenges, and will continue to burst out brilliant brilliance in continuous development and struggle
Haihao Marine respects every employee’s hard work, creates a level playing field for employees, and gives full play to their potential
Q: What are the available shipping methods?
A: Port location: HangZhou or ZheJiang , China Shipping to: CHINAMFG Shipping method: by sea, by air, by express Estimated delivery dates depend on specific order list, shipping service selected and receipt of cleared payment. Delivery time may vary.
Q: What payment methods are supported?
A: Payment: By T/T, Western Union, Money Gram for samples 100% with the order, for production,30% paid for deposit by before production arrangement, the balance to be paid before shipment. Negotiation is accepted.
Q: How to control the quality of CHINAMFG Products?
A: Products Material: Strictly control the material used, make sure they can meet international requested standards, and maintain long working life.
Semi-finished products inspection: We examine the proudcts100% before finished. Such as Visual Inspection, Thread testing, Leak Testing, and so on.
Production line test: Our engineers will inspect machines and lines at fixed period.
Finished Product Inspection: We do the test according to ISO19879-2005, leakage test, proof test, re-use of components, burst test, cyclic endurance test, vibration test, etc.
QCTeam:A QC team with more than 10 professional and technical personnel. To ensure 100% products checking.
Q: How long is the product date of delivery probably?
A: The different product, as well as the diferent run quantity can affect the date of delivery, but in ordinary circumstances product date of delivery about 30 days. Most of products have stock, contact us anytime to get more information.
Q: How to Custom-made(OEM/ODM)?
A: If you have a new product drawing or a sample, please send to us, and we can custom-made the product as your required. We wllalso provide our professional advices of the products to make the design to be more realized & maximize the performance.
Q: How about the mini order quantity?
A: We don’t have strict requirments on most items, due to we have stock. More information can send us the enquiry list, we check and reply you. For custom-made, MoQ will be adviced due to the specific product.
| After-sales Service: | After-Sales |
|---|---|
| Warranty: | After-Sales |
| Lubrication Style: | Oil-less |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Samples: |
US$ 5000/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2023-10-27
China manufacturer Diesel Engine Portable Screw Rotary Air Compressor with Good quality
Product Description
Diesel Engine Portable Screw Rotary Air Compressor
Our Diesel engine type portable screw air compressor
Application:
Widely used in mining, water conservancy, transportation, shipbuilding, urban construction, energy, military and other industries, and well received by customers for high efficiency, energy saving, safe and stable, in line with the requirements of environmental protection equipment.
Products include diesel driven type CHINAMFG machine, motor driven type CHINAMFG machine, power range of 33-348KW, exhaust air capacity of 35m3/min, exhaust pressure up to 35Bar.
Advantages:
1. Diesel engine:High efficiency and energy saving, safety, durability, power reserve enough, adopt CHINAMFG brands of Cummings engine. Comply with Euro II emission requirements, and the EU E – mark standard emission certification.
2. Adopt twin rotor/screw air end for compression air.
Have Features of Strong power, Safety and stability, Economical and environmental friendly.
3. Cooling system
Adopt high performance plate fin structure, can use in high temperature environment, can run for a long time at -20-50 extremely cold or hot climates, and with safety protection cover.
4. Movable system
☆ Adopt adjustable height and rotatable supporting legs, very suitable for outdoor field operation under various working conditions.
☆ Heavy duty machine with 4 wheels, with heavy shock absorption, more flexible.
5. Information safety
Equipped with monitoring system, can monitor machine operation status in any time.
With number of data display, monitoring and alarm stop function.
6. Advanced waterproof and dust proof function
Machine control, each access door and the unit group of vertical plate, all adopt rainproof and dustproof design, prevent the entry of rain or dust, greatly improve the protection level.
7. Adopt scientific technology to achieve sound absorption and shock absorption, can operation under low noise.
8. Can meet the application of altitude above 4500m, temperature of as high as 55 degrees C, and extreme environment of 55% oxygen content.
9. Easy maintenance.
Technical parameter of Movable screw air compressor ( driven by diesel engine):
| Model | Air displacemen (m3/min) | Exhause pressure (Mpa) | Power (Kw) | Outlet pipe size | Dimensions (mm) | Weight (Kg) |
| LGCY-6/13F | 6 | 1.3 | 70 | 2-G1 1-G2 | 2640*1550*1960 | 1700 |
| LGCY-7/10F | 7 | 1 | 70 | 2-G1 1-G2 | 2640*1550*1960 | 1700 |
| LGCY-8/8F | 8 | 0.8 | 70 | 2-G1 1-G2 | 2640*1550*1960 | 1700 |
| LGCY-11/13F | 11 | 1.3 | 118 | 2-G1 1-G2 | 2640*1550*1960 | 2300 |
| LGCY-12.3/10F | 12.3 | 1 | 118 | 2-G1 1-G2 | 2640*1550*1960 | 2300 |
| LGCY-13/8F | 13 | 0.8 | 118 | 2-G1 1-G2 | 2640*1550*1960 | 2300 |
| LGCY-13/13F | 13 | 1.3 | 132 | 2-G1 1-G2 | 3500*2000*2040 | 2500 |
| LGCY-14/12F | 14 | 1.2 | 132 | 2-G1 1-G2 | 3500*2000*2040 | 2500 |
| LGCY-17/8F | 17 | 0.8 | 132 | 2-G1 1-G2 | 3500*2000*2040 | 2500 |
| LGCY-20/7F | 20 | 0.7 | 145 | 2-G1 1-G2 | 3500*2000*2040 | 4400 |
| LGCY-20/15F | 20 | 1.5 | 264 | 2-G1 1-G2 | 4300*2100*2700 | 4400 |
| LGCY-26/20F | 26 | 2 | 288 | 2-G1 1-G2 | 4300*2100*2700 | 4400 |
| LGCY-21/13F | 21 | 1.3 | 250 | 2-G1 1-G2 | 4300*2100*2700 | 4400 |
| LGCY-25/10F | 25 | 1 | 250 | 2-G1 1-G2 | 4300*2100*2700 | 4400 |
| LGCY-18/17F | 18 | 1.7 | 250 | 2-G1 1-G2 | 4300*2100*2700 | 4400 |
| LGCY-25/20F | 25 | 2 | 264 | 2-G1 1-G2 | 4300*2100*2700 | 5500 |
Technical parameter of Movable screw air compressor ( driven by electric motor):
| Model | Air displacemen (m3/min) | Exhause pressure (Mpa) | Power (Kw) | Outlet pipe size | Dimensions (mm) |
| LGDY 37 | 6.3/5.6/4.8 | 0.8/1.0/1.3 | 37 | 2-G1 1-G2 | 2210*1900*1420 |
| LGDY 45 | 7.5/6.8/5.8 | 0.8/1.0/1.3 | 45 | 2-G1 1-G2 | 2850*1520*1500 |
| LGDY 55 | 9.8/8.8/7.2 | 0.8/1.0/1.3 | 55 | 2-G1 1-G2 | 2500*1905*1840 |
| LGDY 75 | 12.3/11.0/9.0 | 0.8/1.0/1.3 | 75 | 2-G1 1-G2 | 2500*1905*1840 |
| LGDY 90 | 15.6/14.2/11.5 | 0.8/1.0/1.3 | 90 | 2-G1 1-G2 | 2640*1550*1860 |
| LGDY 110 | 20.0/17.5/14.5 | 0.8/1.0/1.3 | 110 | 2-G1 1-G2 | 3550*1740*2100 |
| LGDY 132 | 23/21/18.1 | 0.8/1.0/1.3 | 132 | 2-G1 1-G2 | 3550*1740*2100 |
| LGDY 160 | 27.1/25.2/21.2 | 0.8/1.0/1.3 | 160 | 2-G1 1-G2 | 3870*1820*2200 |
| LGDY 200 | 33.3/30.6/26.3 | 0.8/1.0/1.3 | 200 | 2-G1 1-G2 | 4100*2050*2300 |
Our factory and workshop:
After sales service:
1. Providing professional air compression program designing for free.
2. Providing our factory original machine parts at lowest price after machine sales.
3. Providing training and guidance for free, customers can send their staff to our factory to learn how to operate the machines.
4. Warranty period: the screw main machine is 1 year, the bearing is 1 year, the wear parts of air intake valve, electric components, electromagnetic valve, rate valve are 6 months
5. The air filter, oil filter, oil-water separator, lubricating oil, rubber parts and etc. are not included in warranty range.
Certification and patents of our air compressor
FAQ:
Q1: Are you factory or trade company?
A1: We are factory.
Q2: Warranty terms of your machine?
A2: One year warranty for the machine and technical support according to your needs.
Q3: Will you provide some spare parts of the machines?
A3: Yes, of course.
Q4: How long will you take to arrange production?
A4: 380V 50HZ we can delivery the goods within 20 days. Other electricity or other color we will delivery within 30 days.
Q5: Can you accept OEM orders?
A5: Yes, with professional design team, OEM orders are highly welcome!
| After-sales Service: | Online Techinal Support or Remote Debuging |
|---|---|
| Warranty: | 12-24 Month |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
.webp)
What is the impact of altitude on air compressor performance?
The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:
1. Decreased Air Density:
As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.
2. Reduced Airflow:
The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.
3. Decreased Power Output:
Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.
4. Extended Compression Cycle:
At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.
5. Pressure Adjustments:
When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.
6. Compressor Design:
Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.
7. Maintenance Considerations:
Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.
When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2023-10-23