Tag Archives: oil free compressor

China wholesaler Industrial Silent Medical Dry Oil Free Oilless Rotary Screw Type Air Compressor best air compressor

Product Description

Product Description

Industrial Silent Medical Dry Oil Free Oilless Rotary Screw Type Air Compressor

Advantages
1.  Clean Air 100% Oil-Free.
2. Significant Energy Saving,Environmental-Friendly and Pollution-Free .
3. Optimal Isothermal Compression.
4. Low Operation and Maintenance Cost.

5. Powerful MAM Microcomputer Controller.

6. Especially Design for Medical,Pharmacy,Instrument,Spraying and Food Industry,etc. 

 

 

Dry Oil Free Screw Air Compressor
♦  State-of-the-art screw element with Germany technology
♦  Intelligent control system

♦  Low pressure, high pressure Air end
♦  High efficiency oil pump
♦  Adopting cooling fan inverter
♦  The latest water separator
 

State-of-the-art screw element with Germany technology

Adopting the latest air end developed by CHINAMFG development team independently to ensure a high quality and a long working life of the air compressor.

 

Intelligent control system

Assembly of large LCD display screen,stick out a HangZhou,convenient operation;

With the compressor needs maintenance or failure,the display will automatically send warning prompt,remind customers timely maintenance or troubleshooting.

 

Low pressure, high pressure Air end 

DHH dry oil-free air compressor adopts the air end special for low pressure and high pressure that developed with unique technology,also adopts the high quality components to ensure the most pure compressed air.

 

High efficiency oil pump

Using a suitable pump to prevent reverse cycle oil for the smooth operation of the compressor to provide the most suitable operating environment.

 

 

Adopting cooling fan inverter  

Using the most sophisticated advanced inverter automatically adjusted according to the amount of cooling load, only to run smoothly and achieve optimal energy efficiency.

 

Product Parameters

Technical parameter

 

Model Working
pressure
Displacement Power Motor
protection
level
Noise
(db)
Dimensions
(mm)
Weight
(kg)
Outlet diameter
DWW-55 0.75 9.15 55 IP54 80 2100*1500*1790 2600 G1 1/2
0.85 9.11
1.05 7.98
DWW-75 0.75 12.51 75 IP54 80 2300*1600*1790 2800 DN50
0.86 11.60
1.05 10.81
DWW-90 0.75 13.39 90 IP54 80 2300*1600*1790 3400 DN50
0.85 13.37
1.05 12.41
DWW-110 0.75 19.96 110 IP54 82 2800*1800*1860 3400 DN65
0.85 18.74
1.05 16.40
DWW-132 0.75 23.58 132 IP54 82 2800*1800*1860 3450 DN65
0.85 22.13
1.05 19.89
DWW-160 0.75 26.85 160 IP54 82 2800*1800*1860 3550 DN65
0.85 25.47
1.05 23.51
DWW-185 0.75 29.73 185 IP54 82 2800*1800*1850 3950 DN65
0.85 29.65
1.05 26.79
DWW-200 0.75 33.49 200 IP54 85 3100*2150*2200 4500 DN100
0.85 33.35
1.05 29.89
DWW-250W 0.75 42.85 250 IP54 85 3100*2150*2200 5200 DN100
0.85 42.66
1.05 38.3
DWW-280W 0.75 46.73 280 IP54 85 3400*2400*2200 6400 DN100
0.85 45.64
1.05 42.61
DWW-315W 0.75 51.41 315 IP54 90 3400*2400*2200 6400 DN100
0.85 51.25
1.05 46.47
DWW-355W 0.75 58.44 355 IP54 90 3400*2400*2200 6400 DN100
0.85 57.89
1.05 50.99

Certifications

Packaging & Shipping

 

Company Profile

1.Why customer choose us? 
DHH CHINAMFG ZheJiang CO.,LTD.with 23 years old history,we are specialized in Rotary Screw Air Compressor.Germany Standard and 13 years exporting experience help us won more than 30 loyal foreign agents.We warmly welcome your small trial order for quality or market test.

2.Are you a manufacturer or trading company?
We are professional manufacturer with big modern factory in HangZhou,China,with professional design team.Both OEM & ODM service can be accepted.

3.Where is your factory located? How can I visit there?
Our factory is located in HangZhou City, ZheJiang Province, China. We can pick up you from ZheJiang , it’s about 1 hour from ZheJiang Xihu (West Lake) Dis. Airport to our factory. Warmly welcome to visit us!

4.What’s your delivery time?
380V 50HZ we can delivery the goods within 14 days. Other electricity or other color we will delivery within 22 days,if urgently order,pls contact our sales in advance.

5.How long is your air compressor warranty?
One year for the whole machine and 2 years for screw air end, except consumable spare parts and we can provide some spare parts of the machines.

6.How does your factory do regarding quality control?
Quality is everything. we always attach great importance to quality controlling from the very beginning to the very end. Our factory has gained ISO9001:2015 authentication and CE certificate.

7.How long could your air compressor be used?
Generally, more than 10 years.

8. What’s payment term?
T/T,L/C,D/P,Western Union,Paypal,Credit Card,and etc.Also we could accept USD, RMB, Euro and other currency.

9.How about your customer service?
24 hours on-line service available.48 hours problem solved promise.

10.How about your after-sales service?
(1) Provide customers with installation and commissioning online instructions.
(2) Well-trained engineers available to overseas service.
(3) CHINAMFG agents and after service available. 

After-sales Service: Online Support
Warranty: 24months
Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Customization:
Available

|

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China wholesaler Industrial Silent Medical Dry Oil Free Oilless Rotary Screw Type Air Compressor   best air compressorChina wholesaler Industrial Silent Medical Dry Oil Free Oilless Rotary Screw Type Air Compressor   best air compressor
editor by CX 2023-10-23

China OEM Oil-Free Dental Air Compressor Motor 800W Medical Equipment Supply wholesaler

Product Description


Medical silent Oilless Dental Oil Free Air Compressor unit

 

Voltage 110V~240V, 50Hz/60Hz 
Power 800W
Speed 1400-1500RPM
Airflow 118L/min 
Noise 52dB
Tank 24L 
Pressure 8Bar 
N.W 24Kgs 
Dimension 41*41*55cm

Features:

1. Ultra-quiet: The sound is very low when the air compressor is working to meet all requirements for indoor use.

2. Ultra-clean: Pure oil-free design, original oil lubricated piston system, high efficiency, low loss, ultra-clean exhaust gas, to meet the needs of the equipment, and protect the safety of the operator, so far as to response to the “green” global call.

3. Anti-rust coating: Inside the gas tank has rust, anti-bacterial treatment, to ensure gas cleanliness and product safety.

4. Low energy consumption: Pressure and gas production take on the CHINAMFG ratio, under the conditions of the least energy consumption fastest output up to the gas source, and automated design for starting and stopping , not only save power, the more you do not need worry.

5. Technology: cylinder liner system exclusive development of nano-coating technology to abandon ordinary oil-free material manufacturers, quieter, cleaner, longer life, to meet the more demanding areas, such as food, medicine industry.

6. Dry sterilization: Special double vacuum drying and filtration equipment, not just the removal of particulate impurities, little more than a sterilization effect, to meet the supply of high purity gas source and protect the user equipment.

7. Safety in Use: The machine is equipped with multiple automatic protection system, when use
environment voltage, pressure or current any exception will automatically shut down to protect the safety of equipment and personal.

8. Easy to use: Electrical connection with automated design, working without staff on duty; pressure can be adjusted freely according to requirements, without complicated maintenance, just regular water supply and drainage.
Stylish.

9. Appearance: CHINAMFG Medical Air Compressor have fashion design, good performance and practical, regulate the operation of the working life of 20,000 hours or more; various design are the industry’s top engineers for natural Thatcher.

More details , please contact us.
Kathy 
 

 

 

 

Type: Oil Free Air Comperssor
Material: Metal
Applicable Departments: Oral Rehabilitation Department
Certification: CE
Kind: Needle & Hook
Gas Tank: 40L
Samples:
US$ 258/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

How are air compressors utilized in pneumatic tools?

Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:

Power Source:

Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.

Air Pressure Regulation:

Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.

Air Volume and Flow:

Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.

Tool Actuation:

Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.

Versatility:

One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.

Portability:

Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.

Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China OEM Oil-Free Dental Air Compressor Motor 800W Medical Equipment Supply   wholesaler China OEM Oil-Free Dental Air Compressor Motor 800W Medical Equipment Supply   wholesaler
editor by CX 2023-10-19

China Custom Briggs Stratton Air Compressor Oil-Free 0100241 2-Gallon/8 Liters with Hot selling

Product Description

The Briggs and Stratton 2 Gallon /8Liters air compressor is lightweight and portable for taking on quick jobs. Perfect for brad nailers, staplers, and inflation jobs. The oil-free pump means little-to-no maintenance and extended reliability to get the job done over and over again. 

Technical Specification

Tank Size  2 gallon /8 L
Tank shape  Vertical / Hotdog / Pancake / Twin stack / Parallel / Detachable / Abnormal Hotdog
ASME tank (Y/N)
Running HP 1/3 HP
Cut-in/Cut-off (PSI) 70PSI-100PSI
CFM@40psi 0.7
CFM@90psi 0.5
Oil free/lubricate Oil-free
Quick coupler (0/1/2) 0
Pressure gauge 2×1.5”  
Cord length(ft.) 6
Wheels N/A
Handle type Flip up
Air filter N/A
Drain valve Regular
Life cycle(Hrs) 50
Duty cycle % 50%
Noise level dB(A) 2m ≤80 dB(A)

    Features
    • 1/3hp motor Oil free pump
    • 100 max psi
    • 0.7CFM@40PSI
    • 0.5CFM@90PSI
    • Flip-up handle for easy carrying and storage.
    • Suction cup foot mountskeep the air compressor stable during operation.
    • Large regulator knob and quick connect coupler for easy operation.
    Specifications 
    • Tank size : 2 gallon/8 liters
    • Max PSI : 100
    • CFM @ 40 PSI : 0.7
    • CFM @ 90 PSI :0.5
    • Horsepower : 1/3
    • Tank Style : Horizontal
    • Pump : Oil free
    • Motor : Universal
    Packaging Info
    • Package dimensions (L x W x H) inches : 18.3×8.7×14.8 inch/465x220x375mm
    • Weight:20.7lbs/9.4kgs

     

    Lubrication Style: Oil-free
    Cooling System: Air Cooling
    Cylinder Arrangement: Balanced Opposed Arrangement
    Cylinder Position: Vertical
    Structure Type: Semi-Closed Type
    Compress Level: Single-Stage
    Samples:
    US$ 50/Piece
    1 Piece(Min.Order)

    |
    Request Sample

    Customization:
    Available

    |

    air compressor

    How are air compressors utilized in the aerospace industry?

    Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

    1. Aircraft Systems:

    Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

    2. Ground Support Equipment:

    Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

    3. Component Testing:

    Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

    4. Airborne Systems:

    In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

    5. Environmental Control Systems:

    Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

    6. Engine Testing:

    In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

    7. Oxygen Systems:

    In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

    It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

    air compressor

    What is the impact of altitude on air compressor performance?

    The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

    1. Decreased Air Density:

    As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

    2. Reduced Airflow:

    The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

    3. Decreased Power Output:

    Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

    4. Extended Compression Cycle:

    At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

    5. Pressure Adjustments:

    When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

    6. Compressor Design:

    Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

    7. Maintenance Considerations:

    Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

    When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

    air compressor

    In which industries are air compressors widely used?

    Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:

    1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.

    2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.

    3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.

    4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.

    5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.

    6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.

    7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.

    8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.

    9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.

    These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.

    China Custom Briggs Stratton Air Compressor Oil-Free 0100241 2-Gallon/8 Liters   with Hot sellingChina Custom Briggs Stratton Air Compressor Oil-Free 0100241 2-Gallon/8 Liters   with Hot selling
    editor by CX 2023-10-19

    China Custom Air Cooling Energy Saving Oil Free High Pressure Piston Air Compressor manufacturer

    Product Description

    High Pressure Piston Air Compressor 

    DG series middle-high pressure piston air compressor have skid-mounted, portable, electric,diesel-moving 4 categories,Composed by the compressor, electric motor (diesel), clutch, piping systems, operating systems, electrical equipment and auxiliary equipment and other components.
     

    Mainly used for pipeline pressure test of oil exploration,sweeping lines, gas lift and other projects, aswell as membrane nitrogen,heat mining,injecting natural gas for bottom of well,oil and gas ,nationaldefense industry.gas stations,etc., superior performance, high degree of automation. 

    Also can be used as construction requires displacement of less than 20m3 / min, the exhaustpressure is less than 35MPA gas source or CHINAMFG station car.

    High Pressure Piston Air Compressor Advantages

    1.No vibration after simple installation.
     
    2.Use vane air cooling technology, larger cooling area, and longer life.
     
    3.Flywheel’s weight is increased, incredible energy saving.
     
    4.Designed especially for PET bottle blowing machinery, plastic injection molding machinery and hydropower station, etc. 

    The Technical Parameter Of High Pressure Piston Air Compressor 

    Title Model Air delivery Max.working
     pressure
    Motor power Overall Dimensions
    (mm)
    Weight
    (kg)
    m3/min cfm bar psig kw hp
    High pressure /
    Booster Series
     Air compressor
    2 Stage
     compression
    DG0.8/30 0.8 28.25 30 435 9 12 1080*620*800 350
    DG1.25/30 1.25 44.14 30 435 15 20 1800*650*1450 550
    DG1.5/30 1.5 52.97 30 435 15 20 1500*850*1050 550
    DG3/17 3 105.93 17 247 30 40 1750*1050*1250 700
    DG6/17 6 211.86 17 247 45 60 1850*1050*1250 750
    3 Stage 
    compression
    DG2.2/40 2.2 77.68 40 580 22 29 1780*1050*1340 800
    DG2.2/30 2.2 77.68 30 435 22 29 1780*1050*1340 650
    DG3.3/30 3.3 116.52 30 435 30 40 1780*1050*1340 900
    DG3/40 3 105.93 40 580 30 40 1650*1250*1250 1100
    DG0.8/100 0.8 28.25 100 1450 15 20 1300*850*1350 700
    DG1/70 1 35.31 70 1015 15 20 1300*850*1350 500
    DG1/40 1 35.31 40 580 15 20 1300*850*1350 600
    4 Stage 
    compression
    DG1/150 1 35.31 150 2175 22 29 1650*1450*1140 980
    DG1/200 1 35.31 200 2900 22 29 1650*1450*1140 980
    DG1/300 1 35.31 300 4350 22 29 1650*1450*1140 1050
    DG1/400 1 35.31 400 5800 22 29 1650*1450*1140 2700
    DG2.0/80 2 70.62 80 1160 30 40 1780*1450*1140 2500
    DG2.2/150 2.2 77.68 150 2175 30 40 1780*1450*1340 980
    DG2/300 2 70.62 300 4350 37 50 1780*1450*1340 1500
    DG3/80 3 105.93 80 1160 30 40 1780*1450*1140 2600
    DG3/200 3 105.93 200 2900 45 60 1780*1450*1340 2600
    5 Stage
     compression
    DG2/450 2 70.62 450 6525 37 50 1780*1450*1340 2600
    DG3/300 3 105.93 300 4350 45 60 1780*1450*1340 2600
    DG3/450 3 105.93 450 6525 55 74 1780*1450*1340 2800

    *) Specifications are subject to change without prior notice

    DENAIR Air Compressor Certificates

    DENAIR Factory

    DENAIR International Trading Team

    DENAIR Hannover Messe 2017

    FAQ

    Q1: Are you factory or trade company?  
    A1: We are factory.

    Q2: What the exactly address of your factory? 
    A2: No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China

    Q3: Warranty terms of your machine? 
    A3: Two years warranty for the machine and technical support according to your needs.

    Q4: Will you provide some spare parts of the machines? 
    A4: Yes, of course.

    Q5: How long will you take to arrange production? 
    A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days

    Q6: Can you accept OEM orders? 
    A6: Yes, with professional design team, OEM orders are highly welcome

    Lubrication Style: Lubricated
    Cooling System: Air Cooling
    Cylinder Arrangement: Series Arrangement
    Cylinder Position: Vertical
    Structure Type: Open Type
    Compress Level: Multistage
    Customization:
    Available

    |

    air compressor

    What is the role of air compressors in power generation?

    Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

    1. Combustion Air Supply:

    Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

    2. Instrumentation and Control:

    Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

    3. Cooling and Ventilation:

    In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

    4. Cleaning and Maintenance:

    Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

    5. Pneumatic Tools and Equipment:

    In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

    6. Nitrogen Generation:

    Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

    7. Start-up and Emergency Systems:

    Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

    Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

    air compressor

    Can air compressors be integrated into automated systems?

    Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

    Pneumatic Automation:

    Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

    Control and Regulation:

    In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

    Sequential Operations:

    Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

    Energy Efficiency:

    Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

    Monitoring and Diagnostics:

    Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

    When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

    In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

    air compressor

    What is the purpose of an air compressor?

    An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

    1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

    2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

    3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

    4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

    5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

    6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

    Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

    China Custom Air Cooling Energy Saving Oil Free High Pressure Piston Air Compressor   manufacturer China Custom Air Cooling Energy Saving Oil Free High Pressure Piston Air Compressor   manufacturer
    editor by CX 2023-10-18