Product Description
*Product Description
| MODEL | SUPC50-8 | SUPC75-10 | SUPC75-10 | SUPC160-10 | SUPC160-13-II | SUPC190-13 | SUPC190-15 | |
| Machine | ||||||||
| Free air delivery | m³/min | 4.5 | 6 | 5 | 12 | 15 | 15 | 13 |
| cfm | 160 | 215 | 178 | 428 | 535 | 535 | 465 | |
| Normal working pressure | bar | 8 | 8 | 10 | 10 | 13 | 13 | 15 |
| psi | 118 | 118 | 147 | 147 | 191 | 191 | 220 | |
| Dimentions (withou twobar) (mm) |
Length | 2500 | 2500 | 2500 | 3200 | 3200 | 3500 | 3500 |
| Width | 1750 | 1750 | 1750 | 1600 | 1600 | 1750 | 1750 | |
| Height | 2100 | 2100 | 2100 | 2000 | 2000 | 2200 | 2200 | |
| Weight | Kg | 1150 | 1150 | 1150 | 2200 | 2350 | 2500 | 2500 |
| Wheel qty | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
| Size and No. of outlet value | G1″*2 | G1″*2 | G1″*2 | G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
|
| Diesel | ||||||||
| Brand | XICHAI | XICHAI | XICHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | |
| Model | 4DW91-50GBG3U | 4DW93-75GG3U | 4DW93-75GG3U | YC4A160-H300 | YC4A160-H300 | YC6J190-H300 | YC6J190-H300 | |
| Rated power | Kw | 36.8 | 55 | 55 | 118 | 118 | 140 | 140 |
| hp | 50 | 75 | 75 | 160 | 160 | 190 | 190 | |
| No. of cylinders | 4 | 4 | 4 | 4 | 4 | 6 | 6 | |
| Engine speed | rpm | 2650 | 2400 | 2400 | 2200 | 2200 | 2200 | 2200 |
| Oil capacity | L | 5 | 7 | 7 | 11 | 11 | 15 | 15 |
| coolant capacity | L | 30 | 30 | 30 | 60 | 60 | 75 | 75 |
| Battary | V | 12 | 24 | 24 | 24 | 24 | 24 | 24 |
| Fuel tank capacity | L | 100 | 100 | 100 | 180 | 180 | 180 | 180 |
| MODEL | SUPC190-17 | SUPC190-15-II | SUPC220-15 | SUPC220-13-II | SUPC220-16-II | SUPC220-17-II | SUPC260-15-II | |
| Machine | ||||||||
| Free air delivery | m³/min | 10 | 15 | 15 | 17 | 15 | 13 | 22 |
| cfm | 357 | 535 | 535 | 608 | 535 | 465 | 786 | |
| Normal working pressure | bar | 17 | 15 | 15 | 13 | 16 | 17 | 15 |
| psi | 250 | 220 | 220 | 191 | 235 | 250 | 220 | |
| Dimentions (withou twobar) (mm) |
Length | 3500 | 3500 | 3500 | 3500 | 3500 | 3500 | 3700 |
| Width | 1750 | 1750 | 1750 | 1750 | 1750 | 1750 | 1900 | |
| Height | 2200 | 2200 | 2200 | 2200 | 2200 | 2200 | 2350 | |
| Weight | Kg | 2500 | 2650 | 3100 | 3200 | 3200 | 3200 | 3500 |
| Wheel qty | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
| Size and No. of outlet value | G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
|
| Diesel | ||||||||
| Brand | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCAI | |
| Model | YC6J190-H300 | YC6J190-H300 | YC6J220-T300 | YC6J220-T300 | YC6J220-T300 | YC6J220-T300 | YC6A260-H300 | |
| Rated power | Kw | 140 | 140 | 162 | 162 | 162 | 162 | 191 |
| hp | 190 | 190 | 220 | 220 | 220 | 220 | 260 | |
| No. of cylinders | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
| Engine speed | rpm | 2200 | 2200 | 2200 | 2200 | 2200 | 2200 | 2200 |
| Oil capacity | L | 15 | 15 | 20 | 20 | 20 | 20 | 24 |
| coolant capacity | L | 75 | 75 | 90 | 90 | 90 | 90 | 110 |
| Battary | V | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
| Fuel tank capacity | L | 180 | 180 | 220 | 220 | 220 | 220 | 220 |
| MODEL | SUPC260-17-II | SUPC260-22-II | SUPC300-13-II | SUPC300-17-II | SUPC300-25-II | SUPC420-25-II | SUPC430-24-II | SUPC500-25-II | |
| Machine | |||||||||
| Free air delivery | m³/min | 17 | 14 | 28 | 22 | 17 | 25 | 29 | 33 |
| cfm | 608 | 500 | 1000 | 786 | 608 | 893 | 1035 | 1180 | |
| Normal working pressure | bar | 17 | 22 | 13 | 17 | 25 | 25 | 24 | 25 |
| psi | 250 | 324 | 191 | 250 | 368 | 368 | 353 | 396 | |
| Dimentions (withou twobar) (mm) |
Length | 3700 | 3700 | 3900 | 3900 | 3900 | 3600 | 3600 | 3600 |
| Width | 1900 | 1900 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | |
| Height | 2350 | 2350 | 2400 | 2400 | 2400 | 2500 | 2500 | 2500 | |
| Weight | Kg | 3500 | 3600 | 4000 | 4100 | 4200 | 4500 | 4600 | 4700 |
| Wheel qty | 4 | 4 | 4 | 4 | 4 | ||||
| Size and No. of outlet value | G1″*1 G1 1/2″*1 |
G1″*1 G1 1/2″*1 |
G1″*1 G2″*1 |
G1″*1 G2″*1 |
G1″*1 G2″*1 |
G1″*1 G1 1/2″*1 G2 1/2″*1 |
G1″*1 G1 1/2″*1 G2 1/2″*1 |
G1″*1 G1 1/2″*1 G2 1/2″*1 |
|
| Diesel | |||||||||
| Brand | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | YUCHAI | |
| YC6A260-H300 | YC6A260-H300 | YC6K560-KT31 | |||||||
| Rated power | Kw | 191 | 191 | 221 | 221 | 221 | 309 | 320 | 375 |
| hp | 260 | 260 | 300 | 300 | 300 | 420 | 430 | 500 | |
| No. of cylinders | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
| Engine speed | rpm | 2200 | 2200 | 2000 | 2000 | 2000 | 1900 | 1900 | 1900 |
| Oil capacity | L | 24 | 24 | 28 | 28 | 28 | 32 | 32 | 32 |
| coolant capacity | L | 110 | 110 | 140 | 140 | 140 | 180 | 180 | 180 |
| Battary | V | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
| Fuel tank capacity | L | 220 | 220 | 280 | 280 | 280 | 400 | 400 | 400 |
*Certifications
*Company Information
ZheJiang Compressor Import & Export Co.,Ltd is located in the logistics capital of China, 1 of the important birthplaces of Chinese civilization-HangZhou, ZheJiang Province. With professinal manufacturing experience and first -class comprehensive scientific and technological strength of the talent team, as the energy-saving compressor system leader and renowed in the industry.
We specializes in R & D and sales of power frequency ,permanent magnet frequency conversion ,two -stage compressor permanent magnet frequency conversion ,low -voltage and mobile screw air compressor . With a deep industry background , 1 step ahead ambition . With the professional enthusiasm for screw air compressor , team innovation , to meat the challenges of enterprise’s own determination and the rigorous attitude of excellence,products are strictly in accordance with IOS 9001 international quality procedures,to provide customers with energy -saving and reliable products .
We warmly welcomes people from all around the world to visit the company to guide the establishment of a wide range of business contacts and cooperation . Choosing HangZhou Atlas Air compressor Manufacturing Co.,Led.is to choose quality and service ,choose culture and taste ,choose a permanent and trustworthy partner !
*Packaging & Shipping
*Contact us
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2023-10-30